In this article, we report results of experiments on covalent immobilization of Candidia rugosa lipase enzyme on modified multiwall carbon nanotubes (MW-CNTs) for oily wastewater treatment application. MWCNTs were produced using chemical vapor deposition (CVD) and surface-modified by nitric acid and organic cross-linkers. Successful attachment and high enzyme loading up to 30 wt % was confirmed via FTIR and TGA analysis. Enzymatic activity and loading, which are dependent on the oxidized MWCNT surfaces, cross-linker types and concentrations, resulted with high thermal and operational stability in the microenvironment conditions. This demonstrates the potential for improved resistance to the severe conditions in industrial applications. Furthermore, the CNTs-immobilized enzyme yielded a catalytic activity about 93 times higher than those immobilized on other reported support materials. Up to 98% biological activity retention was also achieved, marking a significant improvement over literature-reported activities (1-20%). Titrimetric analysis of hydrolyzed samples using MWCNT-Lipase (after 1 hr reaction time at 378C) resulted in an enzymatic activity increase of about five times over those from lyophilized lipase.
Objective: Leaves methanol extract of Jacaranda acutifolia Humb. and Bonpl. (JA) family Bignoniaceae was subjected to phytochemical investigation as well as antioxidant, hepatoprotective, cytotoxic and antihyperglycemic activities evaluation.Key findings: Eight compounds were identified: luteolin-7-O-β-D-glucuronide, luteolin-7-O-β-D-glucoside, aesculetin, luteolin, verbascoside, luteolin-7-O-β-D-glucuronide methyl ester, apigenin-7-O-β-D-glucuronide methyl ester and apigenin. JA revealed a potent antioxidant activity in vitro superior to vitamin E (DPPH assay; EC 50 of 0.43 mg/mL). A potential cytotoxic activity was produced against hepatocellular (HepG2) and cervical (HeLa) carcinoma cells with IC 50 of 6.05 and 16.7 µg, respectively. Treatment with JA extract inhibited the rise in alanine aminotransferase and aspartate aminotransferase by 33.6% and 36.8% respectively, reduced thiobarbituric acid by 35.7% and decreased the tamoxifen-induced elevation in tumor necrosis factor alpha (TNF-α) level by 42.86%. JA extract elicited a significant decrease in fasting blood glucose by -59.26%. Conclusions:Jacaranda acutifolia could be a natural source for antioxidant, hepatoprotective supplements and could provide a basis for a potential cytotoxic agent. The compounds isolated are responsible at least in part for the observed effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.