In order to study the mechanical properties of inverted cone bottom oil storage tanks under earthquakes when the foundation is uneven, finite element modeling calculation for a 20,000 m3 storage tank is carried out based on ANSYS Workbench. Wind load, hydraulic pressure load, and seismic load are all equalized as distributed loads with varying spatial positions. Considering various combinations of different heterogeneous foundations and seismic loads, and by adjusting the preset foundation bed coefficient, the final foundation bed coefficient and the maximum foundation settlement value when the equivalent stress of the tank floor reaches yield strength under different conditions are calculated. The results show that under the condition of heterogeneous foundation stiffness considering seismic action, when the coefficient of local foundation bed is higher than that of natural silty clay, the requirement for safe use of the inverted cone bottom storage tank can be met. Among the seven simulated heterogeneous foundation forms, the form with high foundation stiffness on the windward side has a great influence on the safety of storage tanks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.