Like many other elements, iridium is lacking a calibrated, SI traceable isotope ratio measurement. In this study, we have undertaken absolute isotope amount ratio measurements of iridium by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) using a state-of-the-art regression model to correct for the instrumental fractionation (mass bias) of isotope ratios using both NIST SRM 997 isotopic thallium and NIST SRM 989 isotopic rhenium as primary calibrators. The optimized regression mass bias correction model is based on incrementally increasing plasma power and short (10-30 min) measurement sessions. This experimental design allows fast implementation of the regression method which would normally require hours-long measurement sessions when executed under constant plasma power. Measurements of four commercial iridium materials provide a calibrated iridium isotope ratio R = 1.6866(6) which corresponds to isotopic abundance x = 0.372 21(8) and an atomic weight of A(Ir) = 192.217 63(17). In addition, we present data on a new Certified Reference Material from NRC Canada IRIS-1 which fulfills the requirements of a delta zero reference for iridium isotope ratio measurements.
Despite its widespread applications in geology, all osmium isotope ratio measurements are either uncalibrated or rely on the veracity of the uncalibrated 1937 Nier values by adopting them as normalizing constants typically in conjunction with an exponential mass bias correction model. In this study, isotope ratios of osmium were determined in six commercial osmium materials, including the DROsS standard and a new NRC isotopic osmium reference material OSIS-1, by MC-ICPMS. We use a previously optimized and validated regression mass bias correction model to correct instrumental isotope fractionation effects which does not rely either on Nier's values or on a strictly mass-dependent behavior of the isotopes. Deviations from mass-dependent fractionation (mass independent fractionation) were observed for osmium isotopes in MC-ICPMS with the most dramatic effect occurring for Os, wherein, on average, close to half-percent bias in the isotope ratioOs/Os was observed as a result of imposing Russell's law.
A method for daily monitoring of yttrium and rare earth elements (YREEs) in seawater using a cheap flow injection system online coupled to inductively coupled plasma-mass spectrometry is reported. Toyopearl AF Chelate 650M® resin permits separation and concentration of YREEs using a simple external calibration. A running cycle consumed 6 mL sample and took 5.3 min, providing a throughput of 11 samples per hour. Linear ranges were up to 200 ng kg−1 except Tm (100 ng kg−1). The precision of the method was <6% (RSDs, n = 5), and recoveries ranged from 93% to 106%. Limits of detection (LODs) were in the range 0.002 ng kg−1 (Tm) to 0.078 ng kg−1 (Ce). Good agreement between YREEs concentrations in CASS-4 and SLEW-3 obtained in this work and results from other studies was observed. The proposed method was applied to the determination of YREEs in seawater from the Jiulong River Estuary and the Taiwan Strait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.