Our aim is to define related molecular events on how dormant Müller glia cells re-enter the cell cycle, proliferate and produce new retinal neurons from initial injury to glial scar formation. Sodium iodate (NaIO3) was used to induce acute retinal injury. Long-Evans rats were administered with NaIO3 or phosphate-buffered saline by intraperitoneal injection. The proliferation, dedifferentiation and neurogenesis of Müller cells were analyzed by double-labeled fluorescence immunohistochemistry with primary antibodies - against Müller cells and specific cell markers. Possible molecules that limit the regenerative potential of Müller cells were also determined by immunofluorescence staining, quantitative RT-PCR, protein array, ELISA and Western blot. In the first 3-7days after NaIO3 administration, Müller cells were activated and underwent a fate switch, including transient proliferation, dedifferentiation and neurogenesis. Nerve growth factor (NGF) signaling concomitantly increased with the downregulation of p27(Kip1) in Müller cells, which may promote Müller cells to re-enter the cell cycle. The transient increase of NGF signaling and the transient decrease of Notch signaling inhibited Hes1, which might enhance the neuronal differentiation of dedifferentiated Müller cells and suppress gliosis. Upregulated Notch and decreased NGF expressions limit dedifferentiation and neurogenesis, but induces retinal Müller cell gliosis at a later stage. We conclude that transient NGF upregulation and Notch1 downregulation may activate the transient proliferation, dedifferentiation and neurogenesis of Müller cells during NaIO3-induced acute retinal injury; which could be a therapeutic target for overcoming Müller cell gliosis. Such therapy could be potentially used for treating retinal-related diseases.
Sodium iodate (NaIO(3))-induced retina injury is one of models that is commonly used to study various retinal diseases caused by retinal pigment epithelium (RPE) injury such as AMD. Previous researches have revealed that RPE and photoreceptors are main impaired objects in this model. By comparison, intra-retinal layer has not been studied in detail after NaIO(3) administration. In this study, we present evidences that intra-retinal neurons can be directly injured by NaIO(3) at early stage and that the morphology had taken obvious changes, the decreased areas of dendritic fields of dopaminergic amacrine cells (DA-ACs), horizontal cells, and melanopsin-expressing retinal ganglion cells (mRGCs). Moreover, we found that miRNA 133b that was considered specifically to express in midbrain dopaminergic neurons was markedly upregulated in retinal DA-ACs after NaIO(3) administration. The overexpression of mir-133b negatively regulated the expression of pitx3, an important transcription factor, and led to a series of deficits of DA-ACs such as TH and D2 receptor expression and DA producing, which may play a causative role in pathological events of horizontal cells and mRGCs. After mir-133b was interfered with mir-133b/RNAi, not only those deficits were rescued, but also the amplitude of b-wave and summed OPs of ERG were improved significantly. In conclusion, our data demonstrate, for the first time, that intra-retinal neurons can be directly injured by NaIO(3) at early stage, and that mir-133b level effectively controls synaptic contacts or neural interactions among DA-ACs, horizontal cells, and mRGCs. Delivering mir-133b/RNAi intravitreally can rescue NaIO(3)-induced failure and improve visual function by restoring synaptic contacts.
Retinitis pigmentosa initially presents as night blindness owing to defects in rods, and the secondary degeneration of cones ultimately leads to blindness. Previous studies have identified active roles of microglia in the pathogenesis of photoreceptor degeneration in RP. However, the contribution of microglia to photoreceptor degeneration remains controversial, partly due to limited knowledge of microglial phenotypes during RP. Rationale: In this study, we investigated the pathways of microglial activation and its contribution to photoreceptor degeneration in RP. Methods: A classic RP model, Royal College of Surgeons rat, was used to explore the process of microglial activation during the development of RP. An inhibitor of colony-stimulating factor 1 receptor (PLX3397) was fed to RCS rats for sustained ablation of microglia. Immunohistochemistry, flow cytometry, RT-qPCR, electroretinography and RNA-Seq were used to investigate the mechanisms by which activated microglia influenced photoreceptor degeneration. Results: Microglia were gradually activated to disease-associated microglia in the photoreceptor layers of RCS rats. Sustained treatment with PLX3397 ablated most of the disease-associated microglia and aggravated photoreceptor degeneration, including the secondary degeneration of cones, by downregulating the expression of genes associated with photoreceptor function and components and exacerbating the impairment of photoreceptor cell function. Disease-associated microglial activation promoted microglia to engulf apoptotic photoreceptor cell debris and suppressed the increase of infiltrated neutrophils by increasing engulfment and inhibiting CXCL1 secretion by Müller cells, which provided a healthier microenvironment for photoreceptor survival. Conclusions: Our data highlight a key role of disease-associated microglia activation in the suppression of rod and cone degeneration, which reduces secondary damage caused by the accumulation of dead cells and infiltrated neutrophils in the degenerating retina.
Retinal regeneration and repair are severely impeded in higher mammalian animals. Although Müller cells can be activated and show some characteristics of progenitor cells when injured or under pathological conditions, they quickly form gliosis scars. Unfortunately, the basic mechanisms that impede retinal regeneration remain unknown. We studied retinas from Royal College of Surgeon (RCS) rats and found that let-7 family molecules, let-7e and let-7i, were significantly overexpressed in Müller cells of degenerative retinas. It demonstrated that down-regulation of the RNA binding protein Lin28B was one of the key factors leading to the overexpression of let-7e and let-7i. Lin28B ectopic expression in the Müller cells suppressed overexpression of let-7e and let-7i, stimulated and mobilized Müller glia de-differentiation, proliferation, promoted neuronal commitment, and inhibited glial fate acquisition of de-differentiated Müller cells. ERG recordings revealed that the amplitudes of a-wave and b-wave were improved significantly after Lin28B was delivered into the subretinal space of RCS rats. In summary, down-regulation of Lin28B as well as up-regulation of let-7e and let-7i may be the main factors that impede Müller cell de-differentiation and proliferation in the retina of RCS rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.