A combined experimental and numerical study was performed to improve the performance of the ventilation system in a mine refuge chamber (MRC). In the experiment, CO2 cylinders and dispersion pipes were used to simulate the CO2 release of 50 people, and 0.1 L/min per person of fresh air was provided by an air compressor. A new analytical model for a 50-person MRC was proposed and validated against the experimental data. Sensitivity analysis was carried out to investigate the effects of several control factors. The results indicated the following: (1) The ventilation system layout has a significant influence on the CO2 concentration distribution in an MRC, while the uniformity of the CO2 concentration distribution in the MRC may not be effective with increased number of air inlets. (2) Under a well-arranged ventilation system in the 50-person MRC, the average CO2 concentration can be controlled at less than 0.5% with a ventilation rate of 0.1 m 3 /min per person, and less than 0.2% with a ventilation rate of 0.3 m 3 /min per person. (3) A quantitative correlation exists between the CO2 concentration and ventilation volume rate, as well as the CO2 release rate, for an MRC under a well-arranged ventilation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.