Microneedle patch is a prominent strategy with minimal invasion and painless application to improve skin penetration of drug molecules. Herein, we report microneedle patch (MNP) as an alternative to the oral route for the systemic delivery of tacrolimus (TM), an immunosuppressant drug. Thiolated chitosan (TCS) based microneedle patch was fabricated and characterized in vitro and in vivo for its mechanical strength, skin penetration, drug release, and skin irritation. The MNP having 225 needles with 575 μm showed good mechanical properties in terms of tensile strength and percentage elongation. The skin penetration showed 84% penetration with no breakage. Histology of the mice skin after insertion showed the penetration of needles into the dermis. In vitro release and ex vivo permeation studies through Franz diffusion cell showed the sustained release (82.5%) of TM from the MNP with significantly higher (p < 0.05) skin permeation as compared with controls, respectively. Moreover, in vivo biocompatibility in rats showed the safety of the material and patch. Thus, the TCS microneedle patch has the potential to be developed as a transdermal delivery system for tacrolimus with improved bioavailability and sustained release over a longer period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.