We reveal unique hydrogen (H-) bonding patterns and exploit them to control the kinetics, pathways and length of supramolecular polymers (SPs). New bisamide-containing monomers were designed to elucidate the role of competing intra-vs. intermolecular Hbonding interactions on the kinetics of supramolecular polymerization (SP). Remarkably, two polymerizationinactive metastable states were discovered. Contrary to previous examples, the commonly assumed intramolecularly H-bonded monomer does not evolve into intermolecularly H-bonded SPs via ring opening, but rather forms a metastable dimer. In this dimer, all H-bonding sites are saturated, either intra-or intermolecularly, hampering elongation. The dimers exhibit an advantageous preorganization, which upon opening of the intramolecular portion of the H-bonding motif facilitates SP in a consecutive process. The retardation of spontaneous self-assembly as a result of two metastable states enables length control in SP by seed-mediated growth.
A complex aggregation pathway towards two diastereomeric P and M supramolecular helices arises from the aggregation of a short, chiral, and rigid oligo(phenyleneethynylene) [OPE, (S)-1]. Thus, while Agg I aggregate is obtained when a DCM solution of (S)-1 is diluted with MCH at room temperature, Agg II aggregate is generated only after a slow heating (353 K)/cooling (273 K) process. Interestingly, during Agg I formation (mechanism 1), short P chain oligomers are produced, which have a great tendency to aggregate in plane, yielding brick-like nanostructures that halt the aggregation process. On the other hand, after a heating/cooling cycle, long M type columnar helical aggregates (Agg II ) are obtained, formed by individual supramolecular polymer chains (mechanism 2) easily visualized by AFM. The two different P/M orientations obtained for Agg I and Agg II reveal the dynamic character of the system and its ability to create diastereomeric helical structures under the right conditions. Different experimental protocols were explored to prepare long M type columnar helical aggregates, which are not obtained by using the previous MCH/DCM 99/1 (v/v) solvent mixture. The generation of the desired M oriented supramolecular polymer is achieved when toluene is added to the solvent mixture in a 97/ 2/1 MCH/Tol/DCM (v/v/v) ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.