Crystal morphology remains an important aspect in pharmaceutical industries and thus lengthy experimentally determined morphology becomes a routine. This leads to advancement of molecular modeling to assist in crystal morphology determination. Morphology of racemic ibuprofen can be grown in PEG 300 solvent and simulated via molecular modeling, the computational technique. The resulting morphology dictates its feasibility and prepares for further necessary control to produce desired morphology. Tuning up the morphology can be done by rationalizing out via molecular modeling the effect of the solvent and crystallization method. Solvent effect persists to influence crystal morphology mainly via interaction of hydrogen bond specific at different facets. However, the influence of solvent-surface interaction in enhancing or inhibiting crystal growth is still not completely resolved. To date, racemic ibuprofen grown in PEG 300 solvent is the first ever reported. The objective of this study is to compare experimental and predicted morphology of racemic ibuprofen using selected potential functions and charge set in vacuum condition. Racemic ibuprofen crystal morphology was grown in PEG 300 solvent via cooling at ambient temperature and predicted via attachment energy (AE) method using molecular modeling. It was found that the experimental morphology is tabular hexagonal while the predicted one is tabular octagonal. The facets were cleaved and its surface chemistry was explained. The predicted lattice energy with lowest percentage error of 0.02% is dominated by van der Waals force rather than electrostatic force.
Granulation of racemic ibuprofen (±IBP) and α-lactose monohydrate (ALM) at a slightly lower (±IBP) melting point is an efficient method of binding the active pharmaceutical ingredients (API) and excipient in a binderless condition. However, the co-crystals may be formed from recrystallization of ±IBP on ALM. The objective of this study is to evaluate the tendency of co-crystal formation of granules (3:7 w/w ratio of ±IBP:ALM) by melt granulation process. Second, investigate the recovery of crystals from polyethylene glycol (PEG) 300 solutions containing ±IBP-ALM mixtures. Characterizations of the samples were performed using Fourier Transform Infrared (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC) and Powder X-Ray Diffraction (PXRD) system of the ±IBP-ALM granules produced from melt crystallization and harvested crystals from PEG 300 solution which is produced using slow evaporation crystallization. Crystal analysis of solution containing ±IBP-ALM mixtures revealed that the crystals formed were not co-crystals. Molecular interactions assessment through binding prediction between ±IBP and ALM terminating surfaces was conducted using molecular modelling technique. The result showed that the favorable binding sites of ±IBP molecules were on the surfaces of (0-20), (1-10), (001) and (011) ALM crystals. Successful binding prediction by the attachment energy method has proven that the co-crystal formation between these molecules is theoretically possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.