The role of thermal mass in indoor air-cooling during the day is a common area of study, which is particularly relevant for an era characterized by energy crises. Thermal energy storage (TES) technologies for application in rooms and buildings are not well developed. This study focuses on the use of coconut oil (co_oil) as a temperature control agent for room air conditioning systems in tropical countries such as Indonesia, given its capability to store large amounts of heat at temperatures around its melting point. Heat exchange studies between co_oil and the air environment were performed by considering three factors: Temperature difference between co_oil and the air environment, the heat absorption behavior and the release of co_oil, and the mass of co_oil required to have a significant effect. The co_oil cell sizes were formulated as responses to natural day and night air temperature profiles, while the performance of the co_oil mass for decreasing room air temperature was predicted using a thermal chamber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.