Summary
A proton exchange membrane was synthesized consuming a sodium alginate biopolymer as the matrix and titanium oxide as the nanofiller. The titanium oxide content varied from 5 to 25 wt%. The biomembrane nanocomposite performs better than the pristine sodium alginate membrane based on liquid uptake, methanol permeability, proton conductivity, ion exchange capacity, and oxidative stability outcomes. The unique properties of sodium alginate and titanium oxide lead to outstanding interconnections, thus producing new materials with great characteristics and enhanced performance. The highest proton conductivity achieved in this study is 17.3 × 10‐3 S cm‐1, which performed by SAT5 (25 wt%) membranes at 70°C. An optimal content of titanium oxide enhances the conductivity and methanol permeability of the membrane. Additionally, the hydrophilicity of pure sodium alginate is greatly reduced and achieves a good liquid uptake capacity and swelling ratio. The characteristics of the SA/TiO2 biomembrane nanocomposite were determined with field emission scanning electron microscope, Fourier transform infrared, X‐ray diffraction, thermal gravimetric analysis/differential scanning calorimetry, and mechanical strength analysis.
Solid Oxide Fuel Cells (SOFCs) are an electrochemical energy converter that receives the world's attention as a power generation system of the future owing to its flexibility to consume various types of fuels, low emission of greenhouses gases, and having high efficiency reaching over 70%. A conventional SOFCs operates at high temperature, typically ranges between 800 to 1000°C. SOFCs use yttria-stabilized zirconia (YSZ) as the electrolyte, which exhibits excellent oxide ion conductivity in this temperature range. However, this temperature range poses an issue to SOFCs durability, as it leads to the degradation of the cell components. In addition, SOFCs application is limited and difficult to implement for the transportation sector and portable appliance. A viable solution is to lower the SOFCs operating temperature to intermediate (600 to 800°C ) or low (<600°C) operating temperature. The benefit of this way, cell durability will improve, as well as other advantages such as facilitates handling, assembling, dismantling, cost reduction, and expanded the SOFCs application. Nonetheless, the key challenge for the issue is finding suitable electrolyte, as YSZ have lower ionic conductivity at low and intermediate temperature range. The aim of this paper is to review the status and challenges in the attempts made to modify YSZ electrolyte within the past decade. The resulting ionic conductivity, microstructure, and densification, mechanical and thermal properties of these 'new' electrolytes critically reviewed. The targeted conductivity of modification of YSZ electrolyte must be exceeded >0.1 S cm -1 to enable high performance of SOFCs power generation systems to be realized for transportation and portable applications. Based on our knowledge, this paper is the first review which focused on the recent status and challenges of YSZ electrolyte towards lowering the operating temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.