Purpose
This study aims to propose a service quality evaluation model for health care services.
Design/methodology/approach
In this study, a service quality evaluation model is proposed based on the service quality measurement (SERVQUAL) scale and machine learning algorithm. Primarily, items that affect the quality of service are determined based on the SERVQUAL scale. Subsequently, a service quality assessment model is generated to manage the resources that are allocated to improve the activities efficiently. Following this phase, a sample of classification model is conducted. Machine learning algorithms are used to establish the classification model.
Findings
The proposed evaluation model addresses the following questions: What are the potential impact levels of service quality dimensions on the quality of service practically? What should be prioritization among the service quality dimensions and Which dimensions of service quality should be improved primarily? A real-life case study in a public hospital is carried out to reveal how the proposed model works. The results that have been obtained from the case study show that the proposed model can be conducted easily in practice. It is also found that there is a remarkably high-service gap in the public hospital, in which the case study has been conducted, regarding the general physical conditions and food services.
Originality/value
The primary contribution of this study is threefold. The proposed evaluation model determines the impact levels of service quality dimensions on the service quality in practice. The proposed evaluation model prioritizes service quality dimensions in terms of their significance. The proposed evaluation model finds out the answer to the question of which service quality dimensions should be improved primarily?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.