Batik merupakan kain yang dibuat khusus, batik sendiri terbilang unik karena memiliki motif tertentu yang dibuat berdasarkan unsur budaya dari daerah asal batik itu dibuat. setiap motif dan warna batik berbeda-beda sehingga sulit untuk dikenali asal dari motir batik itu sendiri. penelitian ini bertujuan untuk meningkatkan hasil ektraksi fitur pada identifikasi motif batik. metode yang digunakan dalam penelitian ini adalah Discrete Cosine Transform bertujuan untuk meningkatkan hasil ektraksi fitur Gray Level Co-Occurrence Matrix untuk mendapatkan hasil akurasi identifikasi motif batik yang lebih baik, sedangkan untuk mengetahui nilai kedekatan antara data training dengan data testing citra batik akan menggunakan K-Nearest Neighbour berdasarkan nilai ekstraksi fitur yang diperoleh. dalam eksperimen ini dilakukan 4 kali percobaan berdasarkan sudut 0°, 45°, 90°, dan 135° pada nilai k=1, 3, 5, 7, dan 9. sementara itu, untuk menghitung tingkat akurasi dari klasifikasi KNN akan menggunakan confusion matrix. Dari uji coba yang di lakukan dengan menggunakan jumalah data training sebanyak 602 citra dan data testing 344 citra terhadap semua kelas berdasarkan sudut 0°, 45°, 90°, dan 135° pada nilai k=1, 3, 5, , dan 9 akurasi tertinggi yang diperoleh DCT-GLCM ada pada sudut 135° dengan nilai k=3 sebesar 84,88% dan yang paling rendah ada pada sudut 0° dengan nilai k=7 dan 9 sebesar 41,86%. Sedangkan hasil uji dengan hanya mennggunakan GLCM akurasi tertinggi ada pada sudut 135° dengan nilai k=1 sebesar 77,90% dan yang paling rendah ada pada sudut 90° dengan nilai k=7 sebesar 40,69%. Dari hasil uji coba yang dilakukan menunjukkan bahwah DCT bekerja dengan baik untuk meningkatkan hasil ekstraksi fitur GLCM yang dibuktikan dengan hasil rata-rata akurasi yang diperoleh.Batik is a specially made cloth, batik itself is unique because it has certain motifs that are made based on cultural elements from the area where the batik was made. each batik motif and color is different so it is difficult to identify the origin of the batik motir itself. This study aims to improve the feature extraction results in the identification of batik motifs. The method used in this research is Discrete Cosine Transform, which aims to increase the extraction of the Gray Level Co-Occurrence Matrix feature to obtain better accuracy results for identification of batik motifs, while to determine the closeness value between training data and batik image testing data will use K- Nearest Neighbor based on the feature extraction value obtained. In this experiment, 4 experiments were carried out based on angles of 0 °, 45 °, 90 °, and 135 ° at values of k = 1, 3, 5, 7, and 9. Meanwhile, to calculate the level of accuracy of the KNN classification, confusion matrix will be used. . From the trials carried out using the total training data of 602 images and testing data of 344 images for all classes based on angles of 0 °, 45 °, 90 °, and 135 ° at values of k = 1, 3, 5, and 9 accuracy The highest obtained by DCT-GLCM was at an angle of 135 ° with a value of k = 3 of 84.88% and the lowest was at an angle of 0 ° with values of k = 7 and 9 of 41.86%. While the test results using only GLCM, the highest accuracy is at an angle of 135 ° with a value of k = 1 of 77.90% and the lowest is at an angle of 90 ° with a value of k = 7 of 40.69%. From the results of the trials conducted, it shows that the DCT works well to improve the results of the GLCM feature extraction as evidenced by the average accuracy results obtained.
Traditional medicinal plants are types of plants that contain active substances that function to treat and are used by the community to cure or prevent various diseases. Therefore, a study was conducted to test the Local Binary Pattern method for feature extraction of each existing traditional medicinal plant and K-Nearest Neighbor for the classification process after extraction from the Local Binary Pattern method. From testing the Local Binary Pattern and K-Nearest Neighbor methods were able to produce a good accuracy of 96.67%, the accuracy value was obtained from manual convusion matrix calculations with a value of k = 9. Meanwhile, the lowest accuracy results are at k = 1 with an accuracy value of 70%. The extraction and classification results from the Local Binary Pattern and K-Nearest Neighbor methods used 120 datasets which were divided into 90 training data with 6 types of medicinal plant leaves consisting of 15 thorn spinach leaves, 15 binahong leaves, 15 castor leaves, 15 African leaves, and 15 betel leaves with 30 experimental data testing.
Abstrak-Dari potensi perikanan dan kelautan secara Nasional, Provinsi Gorontalo memiliki potensi perikanan dan kelautan cukup besar yang dapat dikelola untuk menunjang pembangunan Gorontalo. Potensi perikanan tangkap Provinsi Gorontalo tidak bisa dipisahkan dari potensi perikanan tangkap yang berbasis pada WPP (Wilayah Pengelolaan dan Pemanfaatan) dan diakui secara Nasional maupun Internasional. Provinsi Gorontalo merupakan salah satu provinsi penghasil ikan tuna di Indonesia, hasil tangkapan ikan tuna di gorontalo telah diekspor keberbagai negara. Tuna merupakan salah satu komoditi andalan perikanan di Gorontalo yang juga banyak melibatkan nelayan kecil. Penelitianini bertujuan untuk melakukan identifikasi tingkat kesegaran ikan tuna dengan menggukanan metode Gray LevelCo-Occurrence Matrix(GLCM)sebagai metode ektraksi fitur dan K-Nearest Neighbour (K-NN) digunakan sebagai metode klasifikasi. Padapenelitian ini, akan dilakukan 5 kali percobaan berdasarkan sudut 0°, 45°, 90°, 135° dan 180° pada nilai k=1, 3, 5, dan 7. Sementara itu, untuk menghitung tingkat akurasi dari klasifikasi K-NN akan menggunakan confusion matrix. Dari uji coba yang di lakukan dengan menggunakan jumlah data training sebanyak 130 citra dan data testing 45 citra pada semua kelas dan sudut mendapatkan hasil akurasi tertinggi pada sudut 0° dengan nilai k=1 yaitu sebesar 82,28% dan yang paling rendah ada pada sudut 135° dan 180° dengan nilai k=1 yaitu sebesar 53,71%. Berdasarkan hasil akurasi yang didapatkan menunjukkan bahwah GLCM bekerja dengan baik untuk meningkatkan hasil akurasi klasifikasi K-NN yang dibuktikan dengan hasil rata-rata akurasi yang diperoleh mencapai 50%.Abstract-From the national fisheries and marine potential, Gorontalo Province has a large enough fishery and marine potential that can be managed to support the development of Gorontalo. The capture fisheries potential of Gorontalo Province cannot be separated from the potential of capture fisheries based on the WPP (Management and Utilization Area) and is recognized both nationally and internationally. Gorontalo province is one of the tuna-producing provinces in Indonesia, tuna catches in Gorontalo have been exported to various countries. Tuna is one of the mainstay fisheries commodities in Gorontalo which also involves many small fishermen. This study aims to identify the freshness level of tuna by using the Gray Level Co-Occurrence Matrix (GLCM) method as a feature extraction method and K-Nearest Neighbor (K-NN) is a classification method. In this experiment, 5 experiments were conducted based on the angles of 0°, 45°, 90°, 135° and 180° at the values of k=1, 3, 5, and 7. Meanwhile, to calculate the accuracy level of the K-NN classification, we will use a confusion matrix. From the trials carried out using the amount of training data as many as 130 images and testing data 45 images against all classes based on angles 0°, 45°, 90°, 135°, and 180° at the values of k=1, 3, 5, and 7, the highest accuracy obtained is at an angle of 0° with a value of k=1 which is 82.28% and the lowest is at an angle of 135° and 180° with a value of k=1 which is 53.71%. The results of the trials conducted show that GLCM works well to improve the accuracy of the K-NN classification as evidenced by the average accuracy of 50%.
Academic services are actions taken by state and private universities to provide convenience for student’s academic activities. During the current covid-19 pandemic, every university remains active in academic activities. This study aimed to apply the K-Nearest Neighbor algorithm in predicting the level of student satisfaction with online lectures at University Ichsan Gorontalo. Our main aim was to obtain quantitative information to measure student satisfaction with online lectures during the pandemic, which should be taken into account when making decisions. K-Nearest Neighbor is a non-parametric Algorithm that can be used for classification and regression, but K-Nearest Neighbor are better if feature selection is applied in selecting features that are not relevant to the model. Feature Selection used in this research is Forward Selection and Backward Elimination. Seeing the results of experiments that have been carried out with the application of the K-nearest Neighbor algorithm and the selection feature, the results of the forecasting can be used for consideration or policy in decision making. The highest level of accuracy in the K-Nearest Neighbor algorithm model used Forward Selection with an accuracy rate of 98.00%. Thus, the experimental results showed that feature selection, namely forward selection, was a better model in the relevant selection variables compared to backward elimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.