In the present study, we report the systematic investigation of the effect of chemical oxidation on the structure of single-walled carbon nanotubes (SWNTs) by using different oxidants. The oxidation procedure was characterized by using infrared spectroscopy and transmission electron microscopy (TEM). The SWNTs were produced by chemical vapor deposition (CVD) and oxidized with three kinds of oxidants: (1) nitric acid (2.6 M), (2) a mixture of concentrated sulfuric acid (98 wt %) and concentrated nitric acid (16 M) (v/v ) 3/1) and (3) KMnO 4 . The results reveal that the different functional groups can be introduced when the SWNTs are treated with different oxidants. Refluxing in dilute nitric acid can be considered as a mild oxidation for SWNTs, introducing the carboxylic acid groups only at those initial defects that already exist. The abundance of the carboxylic acid groups generated with this oxidant remained constant along with the treating time. In contrast, sonication of SWNTs in H 2 SO 4 /HNO 3 increased the incidence of carboxylic acid groups not only at initial defect sites but also at newly created defect sites along the walls of SWNTs. Compared to the two oxidants above, when KMnO 4 in alkali was used as the oxidant, which is relatively mild, different amounts of -OH, -CdO, and -COOH groups were introduced. The oxidation processes begin mainly with the oxidation of the initial defects that arise during the CVD growth of the SWNTs and are accompanied by processes that can be roughly divided into two steps: (1) the defect-generating step and (2) the defect-consuming step. Specifically, during the defect-generating step, the oxidants attack the graphene structure by electrophilic reactions and generate active sites such as -OH and -CdO. This step depends on the oxidant's ability to generate -C-OH groups and to transform them into -CdO groups. During the defect-consuming step, the graphene structure of the tube was destroyed by the oxidation of the generated active sites in step 1. The defect-consuming step mostly counts on the ability of the oxidant to etch/destroy the graphite-like structure around the already generated -CdO and their neighborhood groups.
We reveal a new approach for forming a Ag-graded absorber to overcome the large open-circuit voltage deficit in (Cu,Ag)2ZnSn(S,Se)4 solar cells.
In this article, pure phase metastable wurtzite Cu 2 ZnSnS 4 (CZTS) nanocrystals (NCs) were synthesized by a facile one-pot method. When pure 1dodecanethiol (DDT) was used as the solvent, two coexisting CZTS phases (wurtzite and kesterite) were found. When an increased amount of oleylamine (OAm) was added to DDT, kesterite CZTS disappeared gradually, and the asobtained CZTS NCs became smaller and more uniform. When 0.5 mL of OAm was added, rice-like pure phase metastable wurtzite CZTS NCs were obtained. The factors, including amount of OAm, reaction temperature, reaction time, and concentration of precursors, which influence the morphology, size, and monodispersity of CZTS NCs, were studied in detail. The results showed OAm played an important role in the formation of the final pure phase metastable wurtzite NCs. Time-dependent experiments were performed to observe the growth of CZTS NCs. The final CZTS NCs evolved from spherical-like Cu 2 S NCs through rhombuslike intermediate shaped NCs to rice-like pure wurtzite CZTS NCs. On the basis of the detailed time-dependent shape and elemental composition evolutions, a possible asynchronous doping growth and formation mechanism was proposed. The optical and electrical properties of the pure wurtzite CZTS NCs were also investigated. The band gap of the rice-like CZTS is about 1.49 eV, which approaches the optimum value for solar photoelectric conversion. Meanwhile, the current−voltage characteristics and Hall effect measurement of the wurtzite CZTS NCs films indicated that rice-like CZTS NCs favored the electronic transmission and thus may induce the generation of photocurrent. Thus, the obtained wurtzite CZTS NCs are more suitable for using as absorber layer in low cost solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.