This study aimed to isolate nontuberculous mycobacterial species from environmental samples obtained from some selected communities in Ghana. To optimize decontamination, spiked environmental samples were used to evaluate four decontamination solutions and supplemented media, after which the best decontamination solution and media were used for the actual analysis. The isolates obtained were identified on the basis of specific genetic sequences, including heat shock protein 65, IS2404, IS2606, rpoB, and the ketoreductase gene, as needed. Among the methods evaluated, decontamination with 1 M NaOH followed by 5% oxalic acid gave the highest rate of recovery of mycobacteria (50.0%) and the lowest rate of contamination (15.6%). The cultivation medium that supported the highest rate of recovery of mycobacteria was polymyxin B-amphotericin B-nalidixic acidtrimethoprim-azlocillin-supplemented medium (34.4%), followed by isoniazid-supplemented medium (28.1%). Among the 139 samples cultivated in the main analysis, 58 (41.7%) yielded mycobacterial growth, 70 (50.4%) had no growth, and 11 (7.9%) had all inoculated tubes contaminated. A total of 25 different mycobacterial species were identified. Fifteen species (60%) were slowly growing (e.g., Mycobacterium ulcerans, Mycobacterium avium, Mycobacterium mantenii, and Mycobacterium malmoense), and 10 (40%) were rapidly growing (e.g., Mycobacterium chelonae, Mycobacterium fortuitum, and Mycobacterium abscessus). The occurrence of mycobacterial species in the various environmental samples analyzed was as follows: soil, 16 species (43.2%); vegetation, 14 species (38.0%); water, 3 species (8.0%); moss, 2 species (5.4%); snail, 1 species (2.7%); fungi, 1 species (2.7%). This study is the first to report on the isolation of M. ulcerans and other medically relevant nontuberculous mycobacteria from different environmental sources in Ghana. IMPORTANCEDiseases caused by mycobacterial species other than those that cause tuberculosis and leprosy are increasing. Control is difficult because the current understanding of how the organisms are spread and where they live in the environment is limited, although this information is needed to design preventive measures. Growing these organisms from the environment is also difficult, because the culture medium becomes overgrown with other bacteria that also live in the environment, such as in soil and water. We aimed to improve the methods for growing these organisms from environmental sources, such as soil and water samples, for better understanding of important mycobacterial ecology.
We have previously shown that secondary infections of Buruli ulcer wounds were frequently caused by Staphylococcus aureus. To gain understanding into possible routes of secondary infection, we characterized S. aureus isolates from patient lesions and surrounding environments across two Ghanaian health centres. One hundred and one S. aureus isolates were isolated from wounds (n = 93, 92.1%) and the hospital environment (n = 8, 7.9%) and characterized by the spa gene, mecA and the Panton–Valentine leucocidin toxin followed by spa sequencing and whole genome sequencing of a subset of 49 isolates. Spa typing and sequencing of the spa gene from 91 isolates identified 29 different spa types with t355 (ST152), t186 (ST88), and t346 dominating. Although many distinct strains were isolated from both health centres, genotype clustering was identified within centres. In addition, we identified a cluster consisting of isolates from a healthcare worker, patients dressed that same day and forceps used for dressing, pointing to possible healthcare-associated transmission. These clusters were confirmed by phylogenomic analysis. Twenty-four (22.8%) isolates were identified as methicillin-resistant S. aureus and lukFS genes encoding Panton–Valentine leucocidin were identified in 67 (63.8%) of the isolates. Phenotype screening showed widespread resistance to tetracycline, erythromycin, rifampicin, amikacin and streptomycin. Genomics confirmed the widespread presence of antibiotic resistance genes to β-lactams, chloramphenicol, trimethoprim, quinolone, streptomycin and tetracycline. Our findings indicate that the healthcare environment probably contributes to the superinfection of Buruli ulcer wounds and calls for improved training in wound management and infection control techniques.
For cultivation of Mycobacterium ulcerans from clinical specimens, we optimized the release of bacteria from swabs, as well as decontamination and cultivation on supplemented medium. Nevertheless, the proportions of positive cultures, 41.7% (5/12) for fine-needle-aspiration (FNA) samples and 43.8% (49/112) for swab samples, were lower than those we have previously observed for excised tissue specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.