For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment-visit http://www.usgs.gov or call 1-888-ASK-USGS.For an overview of USGS information products, including maps, imagery, and publications, visit http://store.usgs.gov.Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. DatumHorizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83) and the North American Datum of 1927 (NAD 27). Supplemental InformationSpecific conductance is given in microsiemens per centimeter at 25 degrees Celsius (µS/cm at 25 °C).Concentrations of chemical constituents in water are given in milligrams per liter (mg/L). AbstractThe U.S. Geological Survey (USGS), in cooperation with the Texas Water Development Board and the Galveston Bay Estuary Program, collected streamflow and water-quality data at USGS streamflow-gaging stations in the lower Trinity River watershed from May 2014 to December 2015 to characterize and improve the current understanding of the quantity and quality of freshwater inflow entering Galveston Bay from the Trinity River. Continuous streamflow records at four USGS streamflow-gaging stations were compared to quantify differences in streamflow magnitude between upstream and downstream reaches of the lower Trinity River. Water-quality conditions were characterized from discrete nutrient and sedi ment samples collected over a range of hydrologic conditions at USGS streamflow-gaging station 08067252 Trinity River at Wallisville, Tex. (hereinafter referred to as the "Wallisville site"), approximately 4 river miles upstream from where the Trinity River enters Galveston Bay.Based on streamflow records, annual mean outflow from Livingston Dam into the lower Trinity River was 2,240 cubic feet per second (ft 3 /s) in 2014 and 22,400 ft 3 /s in 2015, the second lowest and the highest, respectively, during the entire period of record . During this study, only about 54 percent of the total volume measured at upstream sites was accounted for at the Wallisville site as the Trinity River enters Galveston Bay. This difference in water volumes between upstream sites and the Wallisville site indicates that at high flows a large part of the volume released from Lake Livingston does not reach Galveston Bay through the main channel of the Trinity River. These findings indicate that water likely flows into wetlands and water bodies surrounding the main channel of the Trinity River before reaching the Wallisville site and is being stored or discharged through other channels that flow directly into Galveston Bay.To characterize suspended-sediment concentrations and loads in Trinity River inflow to Galveston Bay, ...
For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment-visit https://www.usgs.gov or call 1-888-ASK-USGS.For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.