The effect of hydrostatic pressure and different heating/cooling rates on physical properties and microstructure of NiTi shape memory alloy has been investigated. The transformation temperatures and physical properties of the alloy have changed with applied pressure. It has been clearly seen from Differential Scanning Calorimetry (DSC) that with the increase of applied pressure, while A s and A f , and M f transformation temperatures decrease, M s value increase. Moreover, based on the increase of the pressure amount applied on the sample, there was an average increase of 48% for Gibbs free energy and 18% for elastic strain energy. Entropy of the alloys decreases depending on the increase in the amount of applied pressure for all heating rates. Depending on the amount of applied pressure on the sample, an interior strain of 0.177% at most was observed. With the increase of applied pressure on the sample, it was determined that activation energy increased. Additionally, the Scanning Electron Microscopy (SEM) images of the samples show that the grain sizes of the unpressured sample and the samples on which pressure is applied are between 40 and 120 μm, which was determined by Image Analysis Method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.