Background In the absence of a vaccine or effective treatment for COVID-19, countries have adopted nonpharmaceutical interventions (NPIs) such as social distancing and full lockdown. An objective and quantitative means of passively monitoring the impact and response of these interventions at a local level is needed. Objective We aim to explore the utility of the recently developed open-source mobile health platform Remote Assessment of Disease and Relapse (RADAR)–base as a toolbox to rapidly test the effect and response to NPIs intended to limit the spread of COVID-19. Methods We analyzed data extracted from smartphone and wearable devices, and managed by the RADAR-base from 1062 participants recruited in Italy, Spain, Denmark, the United Kingdom, and the Netherlands. We derived nine features on a daily basis including time spent at home, maximum distance travelled from home, the maximum number of Bluetooth-enabled nearby devices (as a proxy for physical distancing), step count, average heart rate, sleep duration, bedtime, phone unlock duration, and social app use duration. We performed Kruskal-Wallis tests followed by post hoc Dunn tests to assess differences in these features among baseline, prelockdown, and during lockdown periods. We also studied behavioral differences by age, gender, BMI, and educational background. Results We were able to quantify expected changes in time spent at home, distance travelled, and the number of nearby Bluetooth-enabled devices between prelockdown and during lockdown periods (P<.001 for all five countries). We saw reduced sociality as measured through mobility features and increased virtual sociality through phone use. People were more active on their phones (P<.001 for Italy, Spain, and the United Kingdom), spending more time using social media apps (P<.001 for Italy, Spain, the United Kingdom, and the Netherlands), particularly around major news events. Furthermore, participants had a lower heart rate (P<.001 for Italy and Spain; P=.02 for Denmark), went to bed later (P<.001 for Italy, Spain, the United Kingdom, and the Netherlands), and slept more (P<.001 for Italy, Spain, and the United Kingdom). We also found that young people had longer homestay than older people during the lockdown and fewer daily steps. Although there was no significant difference between the high and low BMI groups in time spent at home, the low BMI group walked more. Conclusions RADAR-base, a freely deployable data collection platform leveraging data from wearables and mobile technologies, can be used to rapidly quantify and provide a holistic view of behavioral changes in response to public health interventions as a result of infectious outbreaks such as COVID-19. RADAR-base may be a viable approach to implementing an early warning system for passively assessing the local compliance to interventions in epidemics and pandemics, and could help countries ease out of lockdown.
Background There is a growing body of literature highlighting the role that wearable and mobile remote measurement technology (RMT) can play in measuring symptoms of major depressive disorder (MDD). Outcomes assessment typically relies on self-report, which can be biased by dysfunctional perceptions and current symptom severity. Predictors of depressive relapse include disrupted sleep, reduced sociability, physical activity, changes in mood, prosody and cognitive function, which are all amenable to measurement via RMT. This study aims to: 1) determine the usability, feasibility and acceptability of RMT; 2) improve and refine clinical outcome measurement using RMT to identify current clinical state; 3) determine whether RMT can provide information predictive of depressive relapse and other critical outcomes. Methods RADAR-MDD is a multi-site prospective cohort study, aiming to recruit 600 participants with a history of depressive disorder across three sites: London, Amsterdam and Barcelona. Participants will be asked to wear a wrist-worn activity tracker and download several apps onto their smartphones. These apps will be used to either collect data passively from existing smartphone sensors, or to deliver questionnaires, cognitive tasks, and speech assessments. The wearable device, smartphone sensors and questionnaires will collect data for up to 2-years about participants’ sleep, physical activity, stress, mood, sociability, speech patterns, and cognitive function. The primary outcome of interest is MDD relapse, defined via the Inventory of Depressive Symptomatology- Self-Report questionnaire (IDS-SR) and the World Health Organisation’s self-reported Composite International Diagnostic Interview (CIDI-SF). Discussion This study aims to provide insight into the early predictors of major depressive relapse, measured unobtrusively via RMT. If found to be acceptable to patients and other key stakeholders and able to provide clinically useful information predictive of future deterioration, RMT has potential to change the way in which depression and other long-term conditions are measured and managed. Electronic supplementary material The online version of this article (10.1186/s12888-019-2049-z) contains supplementary material, which is available to authorized users.
BackgroundWith a wide range of use cases in both research and clinical domains, collecting continuous mobile health (mHealth) streaming data from multiple sources in a secure, highly scalable, and extensible platform is of high interest to the open source mHealth community. The European Union Innovative Medicines Initiative Remote Assessment of Disease and Relapse-Central Nervous System (RADAR-CNS) program is an exemplary project with the requirements to support the collection of high-resolution data at scale; as such, the Remote Assessment of Disease and Relapse (RADAR)-base platform is designed to meet these needs and additionally facilitate a new generation of mHealth projects in this nascent field.ObjectiveWide-bandwidth networks, smartphone penetrance, and wearable sensors offer new possibilities for collecting near-real-time high-resolution datasets from large numbers of participants. The aim of this study was to build a platform that would cater for large-scale data collection for remote monitoring initiatives. Key criteria are around scalability, extensibility, security, and privacy.MethodsRADAR-base is developed as a modular application; the backend is built on a backbone of the highly successful Confluent/Apache Kafka framework for streaming data. To facilitate scaling and ease of deployment, we use Docker containers to package the components of the platform. RADAR-base provides 2 main mobile apps for data collection, a Passive App and an Active App. Other third-Party Apps and sensors are easily integrated into the platform. Management user interfaces to support data collection and enrolment are also provided.ResultsGeneral principles of the platform components and design of RADAR-base are presented here, with examples of the types of data currently being collected from devices used in RADAR-CNS projects: Multiple Sclerosis, Epilepsy, and Depression cohorts.ConclusionsRADAR-base is a fully functional, remote data collection platform built around Confluent/Apache Kafka and provides off-the-shelf components for projects interested in collecting mHealth datasets at scale.
Smart Cities need to be designed to allow the inclusion of all kinds of citizens. For instance, motor disabled people like wheelchair users may have problems to interact with the city. Internet of Things (IoT) technologies provide the tools to include all citizens in the Smart City context. For example, wheelchair users may not be able to reach items placed beyond their arm's length, limiting their independence in everyday activities like shopping, or visiting libraries. We have developed a system that enables wheelchair users to interact with items placed beyond their arm's length, with the help of Augmented Reality (AR) and Radio Frequency Identification (RFID) technologies. Our proposed system is an interactive AR application that runs on different interfaces, allowing the user to digitally interact with the physical items on the shelf, thanks to an updated inventory provided by an RFID system. The resulting experience is close to being able to browse a shelf, clicking on it and obtaining information about the items it contains, allowing wheelchair users to shop independently, and providing autonomy in their everyday activities. Fourteen wheelchair users with different degrees of impairment have participated in the study and development of the system.
Background Major Depressive Disorder (MDD) is prevalent, often chronic, and requires ongoing monitoring of symptoms to track response to treatment and identify early indicators of relapse. Remote Measurement Technologies (RMT) provide an opportunity to transform the measurement and management of MDD, via data collected from inbuilt smartphone sensors and wearable devices alongside app-based questionnaires and tasks. A key question for the field is the extent to which participants can adhere to research protocols and the completeness of data collected. We aimed to describe drop out and data completeness in a naturalistic multimodal longitudinal RMT study, in people with a history of recurrent MDD. We further aimed to determine whether those experiencing a depressive relapse at baseline contributed less complete data. Methods Remote Assessment of Disease and Relapse – Major Depressive Disorder (RADAR-MDD) is a multi-centre, prospective observational cohort study conducted as part of the Remote Assessment of Disease and Relapse – Central Nervous System (RADAR-CNS) program. People with a history of MDD were provided with a wrist-worn wearable device, and smartphone apps designed to: a) collect data from smartphone sensors; and b) deliver questionnaires, speech tasks, and cognitive assessments. Participants were followed-up for a minimum of 11 months and maximum of 24 months. Results Individuals with a history of MDD (n = 623) were enrolled in the study,. We report 80% completion rates for primary outcome assessments across all follow-up timepoints. 79.8% of people participated for the maximum amount of time available and 20.2% withdrew prematurely. We found no evidence of an association between the severity of depression symptoms at baseline and the availability of data. In total, 110 participants had > 50% data available across all data types. Conclusions RADAR-MDD is the largest multimodal RMT study in the field of mental health. Here, we have shown that collecting RMT data from a clinical population is feasible. We found comparable levels of data availability in active and passive forms of data collection, demonstrating that both are feasible in this patient group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.