Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice.
Minocycline, a semisynthetic tetracycline, is a highly lipophilic molecule capable of infiltrating tissues and blood. Previous studies have revealed the functions and mechanisms of minocycline in anti-inflammation, protection of the nervous system and certain tumors. The role of minocycline has never been investigated in hepatocellular carcinoma (HCC). The functions of minocycline on HCC cells were investigated using immunohistochemical staining and western blotting. Minocycline was applied to L02, HepG2 and Huh7 cells, and the growth characteristics were studied. Cisplatin was administered in combination with minocycline in this study. Cell cycle and apoptosis analyses were employed to investigate the mechanisms underlying the growth regulation associated with minocycline and(or) cisplatin. Minocycline caused S phase cell cycle arrest and an increase in the apoptotic rate associated with upregulation of p27, cleaved-caspase8, cleaved-caspase3 and cleaved-PRAP-1. Low dose of cisplatin promoted cell cycle arrest and apoptosis, whereas minocycline was mainly associated with upregulation of cleaved-PARP-1. The combination of cisplatin and minocycline increased the rate and extent of cell cycle arrest and increased the apoptosis rate caused by minocycline. A novel mechanism was revealed. Minocycline functions as an antitumor drug in HCC by regulating p27, caspase-3 and PARP-1. Cisplatin enhanced minocycline's effect on PARP-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.