Oil spills are of great concern because they impose a threat to the marine ecosystem, including shorelines. As oil spilled at sea is transported to the shoreline, and after its arrival, its behavior and physicochemical characteristics change because of natural weathering phenomena. Additionally, the fate of the oil depends on shoreline type, tidal energy, and environmental conditions. This paper critically overviews the vulnerability of shorelines to oil spill impact and the implication of seasonal variations with the natural attenuation of oil. A comprehensive review of various monitoring techniques, including GIS tools and remote sensing, is discussed for tracking, and mapping oil spills. A comparison of various remote sensors shows that laser fluorosensors can detect oil on various types of substrates, including snow and ice. Moreover, current methods to prevent oil from reaching the shoreline, including physical booms, sorbents, and dispersants, are examined. The advantages and limitations of various physical, chemical, and biological treatment methods and their application suitability for different shore types are discussed. The paper highlights some of the challenges faced while managing oil spills, including viewpoints on the lack of monitoring data, the need for integrated decision-making systems, and the development of rapid response strategies to optimize the protection of shorelines from oil spills.
Rice husk adsorption column method has proved to be a promising solution for arsenic (As) removal over the other conventional methods. The present work investigates the potential of raw rice husk as an adsorbent for the removal of arsenic [As(V)] from drinking water. Effects of various operating parameters such as diameter of column, bed height, flow rate, initial arsenic feed concentration and particle size were investigated using continuous fixed bed column to check the removal efficiency of arsenic. This method shows maximum removal of As, i.e., 90.7 % under the following conditions: rice husk amount 42.5 g; 7 mL/min flow rate in 5 cm diameter column at the bed height of 28 cm for 15 ppb inlet feed concentration. Removal efficiency was increased from 83.4 to 90.7 % by reducing the particle size from 1.18 mm to 710 lm for 15 ppb concentration. Langmuir and Freundlich isotherm models were employed to discuss the adsorption behavior. The effect of different operating parameters on the column adsorption was determined using breakthrough curves. In the present study, three kinetic models Adam-Bohart, Thomas and Yoon-Nelson were applied to find out the saturated concentration, fixed bed adsorption capacity and time required for 50 % adsorbate breakthrough, respectively. At the end, solidification was done for disposal of rice husk.
This paper reviews the environmental issues and management practices in the mining sector in the North America. The sustainable measures on waste management are recognized as one of the most serious environmental concerns in the mining industry. For mining activities, it will be no surprise that the metal recovery reagents and acid effluents are a threat to the ecosystem as well as hazards to human health. In addition, poor air quality and ventilation in underground mines can lead to occupational illness and death of workers. Electricity usage and fuel consumption are major factors that contribute to greenhouse gases. On the other hand, many sustainability challenges are faced in the management of tailings and disposal of waste rock. This paper aims to highlight the problems that arise due to poor air quality and acid mine drainage. The paper also addresses some of the advantages and limitations of tailing and waste rock management that still have to be studied in context of the mining sector. This paper suggests that implementation of suitable environmental management tools like life cycle assessment (LCA), cleaner production technologies (CPTs), and multicriteria decision analysis (MCD) are important as it ultimately lead to improve environmental performance and enabling a mine to focus on the next stage of sustainability.
Climate change has been observed worldwide in recent decades, posing challenges to the coastal and offshore oil and gas infrastructure. It is crucial to identify how climate change affects these infrastructures and the associated oil spill risk. This paper provides an analysis of the vulnerability of coastal and offshore oil and gas infrastructure in response to climate change. The paper examines oil spill incidents worldwide and addresses climate change’s possible influences on oil spill risk. Moreover, available oil spill modeling and decision support tools for oil spill response are reviewed considering climate change. The paper signals the need for emerging decision and modeling tools considering climate change effects, which can help decision-makers to evaluate the risk on time and provide early warnings to adapt or prevent the unforeseen impacts on the oil industry partially resulting from global warming, including oil spill accidents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.