In this study, the non-target effects of Bt rice "KMD2" expressing a Cry1Ab protein on the performance of the brown planthopper (BPH), Nilaparvata lugens, over multiple generations were evaluated under laboratory and field conditions. In the laboratory, BPH was reared to observe the impact of the Bt rice as compared to its parental non-Bt cultivar Xiushui 11, while the population dynamics and oviposition performance of BPH were investigated in the field. The survival of BPH nymphs fed Bt and non-Bt rice did not differ significantly. The nymph developmental duration of BPH was significantly delayed by the Bt rice by comparison with the non-Bt rice for the 1st and 2nd but not the 4th generation. Most importantly, the fecundity of BPH on the Bt rice was significantly decreased in every generation when compared with the non-Bt rice. In the field investigations, the population density of BPH nymphs was significantly lower in the Bt rice field. However, the temporal pattern of population dynamics of BPH adults was similar between the Bt and non-Bt rice, presumably due to migratory interference of the adults. In the Bt rice field, the percentage of tillers with eggs and the number of eggs per tiller were also significantly lower from tillering to mature stage. Additionally, Cry1Ab protein could not be detected in guts from single BPH adults. In general, our results suggest that the Bt rice "KMD2" could not stimulate an outbreak of BPH.
Nontarget impacts of six transgenic Bt rice lines (expressing the Cry1Ab or Cry1Ab/ Cry1Ac protein) on the thrips, Stenchaetothrips biformis (Bagnall), attacking the rice seedling and tillering stages, were evaluated under laboratory and Þeld conditions. Laboratory results showed relatively longer larval, pupal development and preoviposition durations of S. biformis. Although it had a shorter oviposition period, female adult longevity and less total laid eggs were found when fed on some tested Bt rice in comparison to non-Bt controls. S. biformis population dynamics in Bt and non-Bt plots were monitored using the plastic bag and beat plate methods. In the Þeld, the temporal patterns of S. biformis population changes were similar between tested Bt rice lines and their respective control; however, the total number of S. biformis individuals collected from the Bt plots were signiÞcantly less or the same, varying from variety to variety, compared with those from the non-Bt plots. ELISA results showed that the Bt insecticidal protein could be transferred from Bt rice to the thrips, and the concentrations of the protein in rice leaves and thrips were not signiÞcantly correlated with some important biological parameters of the thrip. In addition, the potential effects of Bt rice on the abundance of S. biformis candidate predators are also discussed. In conclusion, our results show that the six Bt rice lines assessed may be less preferable host plants to S. biformis at the individual and population levels in comparison to the non-Bt rice plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.