In recent years, oil–water separation has been widely researched to reduce the influences of industrial wastewater and offshore oil spills. A filter membrane with special wettability can achieve the separation because of its opposite wettability for water phase and oil phase. In the field of filter membrane with special wettability, porous metal filter membranes have been much investigated because of the associated high efficiency, portability, high plasticity, high thermal stability, and low cost. This article provides an overview of the research progress of the porous metal filter membrane fabrication and discusses the future developments in this field.
The removal of oil from the water surface is vital to protect the environment and living organisms against the threats posed by industrial oily wastewater and offshore oil spills. High cost, low efficiency, and environmental pollution limit the widespread use of the commercial methods of oil−water separation. In this study, the prewetting polypropylene-wood pulp fiber composite nonwoven fabric (PWNF) has been used in the gravity-driven separation of the oil− water mixture. The prewetting PWNF displayed superior underwater oleophobic properties, and the underwater kerosene contact angle was 137.65°± 4.27°. The oil−water interfacial tension in the microchannels among the PWNF fibers prevented the oil from passing through the microchannels; however, it allowed the passage of water. The PWNF membrane maintained an excellent oil−water separation performance after repeated separation and long-term soaking cycles. The separation membrane maintained 75% and 50% of the initial separation performance after 40 repeat cycles and water immersion for more than 20 days, respectively. The separation rate of the PWNF membrane was also investigated as a function of salt solution concentration, temperature, and pH. Meanwhile, the influences of prewetting time, prewetting temperature, and different dyeing condition of the mixture on the separation rate were clarified. The destruction of the oil−water contact interface was suggested as the main failure mode of the developed PWNF separation membrane. The maximum kerosene height that the PWNF separation membrane could sustain was 800 mm. The obtained results confirmed that the PWNF separation membrane exhibited the high potential of widespread use in various environments for achieving efficient and stable separations, especially for the oily wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.