The performance of attitude stabilization control algorithms for rigid spacecraft can be limited by disturbances. In this paper, the global finite-time attitude stabilization problem with disturbances is investigated and handled by constructing a second-order sliding mode controller. Firstly, a virtual controller based on set stabilization idea is constructed to globally finite-time stabilize the system. Then, a relay polynomial second-order sliding mode controller is constructed to guarantee that the tracking error towards the virtual controller will converge to zero in finite-time. Finite-time Lyapunov theory is applied to support the proof and stability analysis. The global finite-time stability holds even with bounded disturbances. The effectiveness and feasibility of the controller are illustrated by the numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.