In this paper, discrete linear quadratic regulator (DLQR) and iterative linear quadratic regulator (ILQR) methods based on high-order Runge-Kutta (RK) discretization are proposed for solving linear and nonlinear quadratic optimal control problems respectively. As discovered in [W. Hager, Runge-Kutta method in optimal control and the discrete adjoint system, Numer. Math., 2000, pp. 247-282], direct approach with RK discretization is equivalent with indirect approach based on symplectic partitioned Runge-Kutta (SPRK) integration. In this paper, we will reconstruct this equivalence by the analogue of continuous and discrete dynamic programming. Then, based on the equivalence, we discuss the issue that the internal-stage controls produced by direct approach may have lower order accuracy than the RK method used. We propose order conditions for internal-stage controls and then demonstrate that third or fourth order explicit RK discretization cannot avoid the order reduction phenomenon. To overcome this obstacle, we calculate node control instead of internal-stage controls in DLQR and ILQR methods. And numerical examples will illustrate the validity of our methods. Another advantage of our methods is high computational efficiency which comes from the usage of feedback technique. In this paper, we also demonstrate that ILQR is essentially a quasi-Newton method with linear convergence rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.