Quantitative structure-toxicity relationship (QSTR) plays an important role in toxicity prediction. With the modified method, the quantum chemistry parameters of 57 benzoic acid compounds were calculated with modified molecular connectivity index (MCI) using Visual Basic Program Software, and the QSTR of benzoic acid compounds in mice via oral LD50 (acute toxicity) was studied. A model was built to more accurately predict the toxicity of benzoic acid compounds in mice via oral LD50: 39 benzoic acid compounds were used as a training dataset for building the regression model and 18 others as a forecasting dataset to test the prediction ability of the model using SAS 9.0 Program Software. The model is LogLD50 = 1.2399 × 0JA +2.6911 × 1JA – 0.4445 × JB (R2 = 0.9860), where 0JA is zero order connectivity index, 1JA is the first order connectivity index and JB = 0JA × 1JA is the cross factor. The model was shown to have a good forecasting ability.
As an important biomarker for cancer, polyamine levels in body fluid could be employed for monitoring the colorectal cancer (CRC), however the role of polyamines in the development and therapeutics phases of CRC remains uncertain. In this paper, the relationship between polyamines and CRC development and therapeutics had been investigated by the study of changes in plasma polyamine levels during the precancerous, developmental and treatment phases of CRC. After inducing CRC in Wistar rats by intraperitoneal injection of 1, 2-dimethylhydrazine, the animals were given a traditional Chinese medicine, Aidi injections. Firstly, the polyamine levels in the plasma of CRC, healthy and medicated rats were measured by UHPLC-MS/MS assay. In addition, Lasso regression analysis was used for screening and confirming the key markers, which can be employed for distinguishing the healthy and CRC rats as well as the CRC and medication rats. The results obtained showed that polyamine metabolism had been disrupted by CRC but returned to normal levels following Aidi injections and, in particular, putrescine and agmatine were closely correlated with CRC. Our results demonstrate the potential value of plasma polyamine metabolic profiling during the early diagnosis and medical treatment of CRC. Also, the integrated method of polyamine metabolite target analysis and lasso regression analysis can be applied in metabolomics for seeking the differential metabolites.
BackgroundIn investigating differentially expressed genes or other selected features, researchers conduct hypothesis tests to determine which biological categories, such as those of the Gene Ontology (GO), are enriched for the selected features. Multiple comparison procedures (MCPs) are commonly used to prevent excessive false positive rates. Traditional MCPs, e.g., the Bonferroni method, go to the opposite extreme: strictly controlling a family-wise error rate, resulting in excessive false negative rates. Researchers generally prefer the more balanced approach of instead controlling the false discovery rate (FDR). However, the q-values that methods of FDR control assign to biological categories tend to be too low to reliably estimate the probability that a biological category is not enriched for the preselected features. Thus, we study an application of the other estimators of that probability, which is called the local FDR (LFDR).ResultsWe considered five LFDR estimators for detecting enriched GO terms: a binomial-based estimator (BBE), a maximum likelihood estimator (MLE), a normalized MLE (NMLE), a histogram-based estimator assuming a theoretical null hypothesis (HBE), and a histogram-based estimator assuming an empirical null hypothesis (HBE-EN). Since NMLE depends not only on the data but also on the specified value of Π0, the proportion of non-enriched GO terms, it is only advantageous when either Π0 is already known with sufficient accuracy or there are data for only 1 GO term. By contrast, the other estimators work without specifying Π0 but require data for at least 2 GO terms. Our simulation studies yielded the following summaries of the relative performance of each of those four estimators. HBE and HBE-EN produced larger biases for 2, 4, 8, 32, and 100 GO terms than BBE and MLE. BBE has the lowest bias if Π0 is 1 and if the number of GO terms is between 2 and 32. The bias of MLE is no worse than that of BBE for 100 GO terms even when the ideal number of components in its underlying mixture model is unknown, but has high bias when the number of GO terms is small compared to the number of estimated parameters. For unknown values of Π0, BBE has the lowest bias for a small number of GO terms (2-32 GO terms), and MLE has the lowest bias for a medium number of GO terms (100 GO terms).ConclusionsFor enrichment detection, we recommend estimating the LFDR by MLE given at least a medium number of GO terms, by BBE given a small number of GO terms, and by NMLE given either only 1 GO term or precise knowledge of Π0.
Diterpenoid alkaloids are extracted from plants. These compounds have broad biological activities, including effects on the cardiovascular system, anti-inflammatory and analgesic actions, and anti-tumor activity. The anti-inflammatory activity was determined by carrageenan-induced rat paw edema and experimental trauma in rats. The number of studies focused on the determination, quantitation and pharmacological properties of these alkaloids has increased dramatically during the past few years. In this work we built a dataset composed of 15 diterpenoid alkaloid compounds with diverse structures, of which 11 compounds were included in the training set and the remaining compounds were included in the test set. The quantitative chemistry parameters of the 15 diterpenoid alkaloids compound were calculated using the HyperChem software, and the quantitative structure–activity relationship (QSAR) of these diterpenoid alkaloid compounds were assessed in an anti-inflammation model based on half maximal effective concentration (EC50) measurements obtained from rat paw edema data. The QSAR prediction model is as follows: log(EC50)=−0.0260×SAA+0.0086×SAG+0.0011×VOL−0.0641×HE−0.2628×LogP−0.5594×REF−0.2211×POL−0.1964×MASS+0.088×BE+0.1398×HF (R2 = 0.981, Q2 = 0.92). The validated consensus EC50 for the QSAR model, developed from the rat paw edema anti-inflammation model used in this study, indicate that this model was capable of effective prediction and can be used as a reliable computational predictor of diterpenoid alkaloid activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.