This study investigated the applicability of maghemite (γ-Fe2O3) nanoparticles for the selective removal of toxic heavy metals from electroplating wastewater. The maghemite nanoparticles of 60 nm were synthesized using a coprecipitation method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDX). Batch experiments were carried out for the removal of Pb2+ions from aqueous solutions by maghemite nanoparticles. The effects of contact time, initial concentration of Pb2+ions, solution pH, and salinity on the amount of Pb2+removed were investigated. The adsorption process was found to be highly pH dependent, which made the nanoparticles selectively adsorb this metal from wastewater. The adsorption of Pb2+reached equilibrium rapidly within 15 min and the adsorption data were well fitted with the Langmuir isotherm.
The study of photocatalytic degradation of phenol was exploited with nano-ZnO as immobilized photocatalysts in a laboratory scale photocatalytic reactor. The photocatalytic degradation mechanism and kinetics of phenol in water were studied using the solid-phase microextraction (SPME) technique. Based on optimized headspace SPME conditions, phenol in water was first extracted by the fibre, which was subsequently inserted into an aqueous system with immobilized photocatalysts (nano-ZnO) exposed to an irradiation source (i.e., ultraviolet A (UVA) lamps). After different irradiation times (5–80 min), four main intermediates of photocatalytic degradation generated on the fibre were determined by GC-MS.
A thin film TiO2 in hierarchical nano-structure with high photocatalytic activities was synthesized in simple steps with ultrasonication. The crystal structure and morphology of the photocatalyst were investigated by X-ray diffraction (XRD) and high-resolution field emission scanning electron microscope (FE-SEM). In the present work, nanostructured TiO2 was directly formed onto a Ti substrate via a solution approach. This nanostructured TiO2 photocatalyst can be reused and will not generate secondary contamination to treated water. The photocatalytic activity of the synthesized TiO2 photocatalyst was evaluated by the degradation of phenol under UVC irradiation in water and was compared with the general sol-gel derived TiO2 films as well as a commercial DP-25 TiO2 coating. It was found that the synthesized nanostructured TiO2has significantly high and stable photocatalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.