Residence of cancer-propagating cells (CPCs) within preferential microenvironmental niches has a major part in evading therapy. However, the nature of niches involved and the mechanisms protecting CPCs remain largely unknown. We addressed these issues in mouse transplantation models of acute lymphoblastic leukemia (ALL). When the engrafted leukemic cells substantially damaged adjacent microenvironment in the bone marrow (BM), after chemotherapy small foci of CPCs were retained, surrounded by sheaths of supporting cells that comprise a protective niche. We investigated patients' BM biopsies and found evidence of a similar process in patients receiving induction therapy. The efficacy of chemotherapy was enhanced by interfering with the niche formation or function. We therefore identified a therapy-induced niche that protects CPCs.
These data describe an important mechanism by which PDGFRα promotes glioma malignant phenotypes through PKA-dependent serine phosphorylation of Dock180, and the data thereby support targeting the PDGFRα-PKA-Dock180-Rac1 axis for treating GBM with molecular profiles indicating PDGFRα signaling dependency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.