In recent years, freak wave/rouge wave has become an important problem in science and engineering. Modulational instability is considered to be an important factor leading to freak wave in the wave evolution of deep water, and Janssen (2003) defined Benjamin-Feir index (BFI) to reflect it. Mori and Janssen (2006) gave the occurrence probability of freak waves based on a weakly non-Gaussian theory, and distribution of wave height is determined by skewness and kurtosis of surface elevation to a considerable extent in deep water. According to observational record, freak wave has not only been found in deep water in the ocean, but also been observed in shallow water and coastal areas. In the process of water wave entering continental shelf, water depth is changing with mild slope after a long distance propagation. This study focus on investigating how water depth affect skewness and kurtosis in the high order nonlinear wave evolution from deep water to finite water depth in two-dimension.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/a8LiJvXWRrw
In the propagation and evolution of sea waves, previous studies pointed out that the occurrence of the freak wave height is significantly related to the quasi-resonant four-wave interaction in the modulated waves. From numerical--experimental study over an uneven bottom, the nonlinear effect caused by the bathymetry change also contributes to the occurrence of extreme events in unidirectional waves. To comprehensively analyse the two-dimensional wavefield, this study develops an evolution model for a directional random wavefield based on the depth-modified nonlinear Schrödinger equation, which considers the nonlinear resonant interactions and the wave shoaling the shallow water. Through Monte Carlo simulation, we discuss the directional effect on the four-wave interaction in the wave train and the maximum wave height distribution from deep to shallow water with a slow varying slope. The numerical result indicates that the directional spreading has a dispersion effect on the freak wave height. In a shallow-water environment, this effect becomes weak, and the bottom topography change is the main influencing factor in the wave evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.