The effects of increasing sea surface temperature (SST) and aerosol loading in a drought region in Southern China are studied using aerosol optical depth (AOD), low-level cloud cover (LCC), visibility, and precipitation from observed surface data; wind, temperature, specific humidity, and geopotential height from the NCEP–NCAR reanalysis fields; and SST from the NOAA archive data. The results show a warming of the SST in the South China Sea and the Indian Ocean, and a strengthening of the West Pacific Subtropical High (WPSH) in the early summer during the last 40 yr, with the high pressure system extending farther westward over the continent in Southern China. Because the early summer average temperature contrast between the land and ocean decreased, the southwesterly monsoon from the ocean onto mainland China weakened and a surface horizontal wind divergence anomaly occurred over Southern China stabilizing the boundary layer. Thus, less moisture was transported to Southern China, causing a drying trend. Despite this, surface observations show that AOD and LCC have increased, while visibility has decreased. Precipitation has decreased in this region in the early summer, consistent with both the second aerosol indirect effect (reduction in precipitation efficiency caused by the more numerous and smaller cloud droplets) and dynamically induced changes from convective to more stratiform clouds. The second aerosol indirect effect and increases in SST and greenhouse gases (GHG) were simulated separately with the ECHAM4 general circulation model (GCM). The GCM results suggest that both effects contribute to the changes in LCC and precipitation in the drought region in Southern China. The flooding trend in Eastern China, however, is more likely caused by strengthened convective precipitation associated with increases in SST and GHG.
We study serial distributed detection and fusion over noisy channels in wireless sensor networks (WSNs) with bathtubshaped failure (BSF) rate of the sensors in this paper. In the previous work, we applied BSF rate to parallel topology and derived the Extension Log-likelihood Ration Test (ELRT) rule. Although ELRT is superior to traditional fusion rule without considering failed sensors, the detection performance decreases noticeably in the presence of a large number of failed sensors. In this paper, we construct a serial topology based on the target radiation energy attenuation model, apply BSF rate to serial topology, and derive the corresponding fusion rule. Unlike the parallel fusion, where the local sensors send their decisions to the Global Fusion Center (GFC) in the region of interest (ROI) directly, sensors in the serial topology transmit local decisions through multi-hop, short-range communications. At the same time, we extend ELRT to noisy channels. Finally, simulation results prove the effectiveness of the proposed fusion rules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.