This study examined the prebiotic effects of xylooligosaccharides (XOS) on intestinal characteristics, gut microbiota, cecal short-chain fatty acids, plasma calcium metabolism, and immune parameters of laying hens. A total of 1,080 White Lohmann laying hens (28 wk of age) was assigned to 6 dietary treatments that included XOS at concentrations of 0, 0.01, 0.02, 0.03, 0.04, or 0.05% for 8 weeks. Each treatment had 6 replicates with 10 cages (3 birds/cage). Blood, intestinal tissues, and cecal digesta samples were collected from chickens at the end of the experiment. Villus height, crypt depth, the villus to crypt (VH: CD) ratio, and the relative length of different intestinal sections were evaluated. Additionally, the number of microorganisms and the content of short-chain fatty acids in cecal digesta samples were determined. Plasma concentrations of immunoglobulin A (IgA), immunoglobulin G, immunoglobulin M (IgM), interleukin 2 (IL-2), tumor necrosis factor-α(TNF-α), 1, 25-dihydroxyvitamin D3 (1,25(OH)2D3), calcitonin (CT), and parathyroid hormone (PTH) were also determined. The results showed that villus height and the VH: CD ratio of the jejunum were increased (linear, P < 0.01) with the increase in dietary XOS concentration, and the relative length of the jejunum (P = 0.03) was increased significantly in XOS diets. Dietary supplementation of XOS significantly increased (linear, P < 0.01) the number of Bifidobacteria in the cecum; however, total bacteria count, Lactobacillus, and Escherichia coli in the cecum were not affected by XOS supplementation. In addition, inclusion of XOS increased (linear, P < 0.01) the content of butyrate in the cecum; and the content of acetic acid showed a linear increasing trend (P = 0.053) with increasing concentration of XOS in the diets. Supplementation with XOS increased (quadratic, P < 0.05) the content of 1,25(OH)2D3 in plasma. There were no significant differences (P > 0.05) in the content of CT and PTH among dietary treatments. Furthermore, dietary XOS increased contents of IgA (linear, P < 0.05), TNF-α (linear, P < 0.05), IgM (linear, P < 0.05; quadratic, P < 0.05), and IL-2 (quadratic, P < 0.05). Taken together, it was suggested that supplemental XOS can enhance the intestinal health and immune function of laying hens by positively influencing the intestinal characteristics, gut microbiota, cecal short-chain fatty acids, and immune parameters.
The study was conducted to investigate the effect of essential oils on performance, egg quality, nutrient digestibility and yolk fatty acid profile in laying hens. A total of 960 Lohmann laying hens aged 53 weeks were enrolled, under 4 different treatment diets supplemented with 0, 50, 100 and 150 mg/kg essential oils (Enviva EO, Dupont Nutrition Biosciences ApS, Denmark), respectively. Each treatment was replicated 8 times with 30 birds each. Birds were fed dietary treatment diets for 12 weeks (54 to 65 weeks). For data recording and analysis, a 12-week period was divided into 3 periods of 4 weeks' duration each: period 1 (54 to 57 weeks), period 2 (58 to 61 weeks), and period 3 (62 to 65 weeks). For the diet supplemented with Enviva EO, hen-day egg production and the feed conversion ratio (FCR) were significantly improved (P < 0.05) at weeks 58 to 61, and the eggshell thickness was significantly increased (P < 0.05) at week 65. However, egg production, egg weight, feed intake, FCR and other egg quality parameters (albumen height, Haugh unit, egg yolk color and eggshell strength) were not affected by the dietary treatment. In addition, compared with the control diet, protein digestibility in the 100 mg/kg Enviva EO treatment group was significantly increased (P < 0.05), and fat digestibility in the 100 and 150 mg/kg Enviva EO treatment groups was significantly decreased (P < 0.05), but Enviva EO had no effect on energy apparent digestibility. Saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) gradually decreased and polyunsaturated fatty acid (PUFA) increased with Enviva EO supplementation, but the difference was not significant. The data suggested that the supplementation of essential oils (Enviva EO) in laying hen diet did not show a significant positive effect on performance and yolk fatty acid composition but it tended to increase eggshell thickness and protein digestibility, especially at the dose of 50 mg/kg.
Resistant starch (RS) was recently approved to exert a powerful influence on gut health, but the effect of RS on the caecal barrier function in meat ducks has not been well defined. Thus, the effect of raw potato starch (RPS), a widely adopted RS material, on microbial composition and barrier function of caecum for meat ducks was determined. A total of 360 Cherry Valley male ducks of 1-d-old were randomly divided and fed diets with 0 (control), 12, or 24 % RPS for 35 d. Diets supplemented with RPS significantly elevated villus height and villus height:crypt depth ratio in the caecum. The 16S rRNA sequence analysis indicated that the diet with 12 % RPS had a higher relative abundance of Firmicutes and the butyrate-producing bacteria Faecalibacterium, Subdoligranulum, and Erysipelatoclostridium were enriched in all diets. Lactobacillus and Bifidobacterium were significantly increased in the 24 % RPS diet v. the control diet. When compared with the control diet, the diet with 12 % RPS was also found to notably increase acetate, propionate and butyrate contents and up-regulated barrier-related genes including claudin-1, zonula occludens-1, mucin-2 and proglucagon in the caecum. Furthermore, the addition of 12 % RPS significantly reduced plasma TNF-α, IL-1β and endotoxin concentrations. These data revealed that diets supplemented with 12 % RPS partially improved caecal barrier function in meat ducks by enhancing intestinal morphology and barrier markers expression, modulating the microbiota composition and attenuating inflammatory markers.
Summary Snail1 and ZEB1 are transcriptional repressors that drive tumor initiation and metastasis in animal models. Snail1 and ZEB1 are frequently coexpressed in tumor cell lines, suggesting that these factors may cooperate to promote tumor progression. However, coexpression of these transcriptional repressors in primary human cancer specimens has not been investigated. Previous studies assessed expression in primary breast cancers of Snail1 messenger RNA, which does not reflect Snail1 activity because Snail1 is subject to posttranslational modifications that inhibit its nuclear localization/activity. In the current study, using breast tumor cell lines of known Snail1 and ZEB1 expression status, we developed immunohistochemistry protocols for detecting nuclear Snail1 and nuclear ZEB1 proteins. Using these protocols, we assessed nuclear Snail1 and nuclear ZEB1 expressions in primary human breast cancers of varying subtypes (n = 78). Nuclear Snail1 and estrogen receptor α expression were inversely associated in primary breast cancers, and nuclear Snail1 was expressed in approximately 80% of triple-negative breast cancers (lacking estrogen receptor α, progesterone receptor, and human epidermal growth factor receptor 2 overexpression). In contrast, nuclear ZEB1 was expressed at a significantly lower frequency in these breast cancers. Notably, nuclear Snail1 protein was detected in 45% of ductal carcinoma in situ specimens (n = 29), raising the important possibility that nuclear Snail1 expression in early stage breast lesions may predict future development of invasive breast cancer. Collectively, our studies demonstrate frequent expression of nuclear Snail1, but not nuclear ZEB1, in invasive, triple-negative breast cancers as well as in intraductal carcinomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.