Forest soils store vast amounts of terrestrial carbon, but we are still limited in mechanistic understanding on how soil organic carbon (SOC) stabilization or turnover is controlled by biotic and abiotic factors in forest ecosystems. We used phospholipid fatty acids (PLFAs) as biomarker to study soil microbial community structure and measured activities of five extracellular enzymes involved in the degradation of cellulose (i.e., β-1,4-glucosidase and cellobiohydrolase), chitin (i.e., β-1,4-N-acetylglucosaminidase), and lignin (i.e., phenol oxidase and peroxidase) as indicators of soil microbial functioning in carbon transformation or turnover across varying biotic and abiotic conditions in a typical temperate forest ecosystem in central China. Redundancy analysis (RDA) was performed to determine the interrelationship between individual PFLAs and biotic and abiotic site factors as well as the linkage between soil microbial structure and function. Path analysis was further conducted to examine the controls of site factors on soil microbial community structure and the regulatory pathway of changes in SOC relating to microbial community structure and function. We found that soil microbial community structure is strongly influenced by water, temperature, SOC, fine root mass, clay content, and C/N ratio in soils and that the relative abundance of Gram-negative bacteria, saprophytic fungi, and actinomycetes explained most of the variations in the specific activities of soil enzymes involved in SOC transformation or turnover. The abundance of soil bacterial communities is strongly linked with the extracellular enzymes involved in carbon transformation, whereas the abundance of saprophytic fungi is associated with activities of extracellular enzymes driving carbon oxidation. Findings in this study demonstrate the complex interactions and linkage among plant traits, microenvironment, and soil physiochemical properties in affecting SOC via microbial regulations.
Flue-cured tobacco (Nicotiana tabacum L.) is a major cash crop in Yunnan, China, and the yield, chemical components, and their proportions decide the quality of tobacco leaves. To understand the effects of environmental factors (soil and climatic factors) on the yield and quality of flue-cured tobacco and determine the main regulating factors, we selected three flue-cured tobacco cultivars [K326, Yunyan87 (Yun87), and Honghuadajinyuan (Hongda)] grown in the Honghe Tobacco Zone. Indices related to yield and economic traits, chemical component properties, soil physical and chemical properties, and climatic factors at different planting sites, were evaluated. We used variance analysis, correlation analysis, and redundancy analysis (RDA) in this study. The results showed that the yield and chemical component properties of flue-cured tobacco, except for the number of left leaves and plant total sugar (PTS) content, were significantly correlated with climatic factors. Particularly, the yield increased in drier and sunnier weather. In terms of the carbon supply capacity, PTS, petroleum ether (PPE), and starch contents (PS) were higher under high-altitude and high-latitude climatic conditions, whereas for the nitrogen supply capacity, plant nitrogen (PTN) and nicotine (PN) contents improved under low-altitude and low-latitude climatic conditions. PTS, reducing sugar (PRS), potassium (PTK), chlorine (PCL), and PPE contents were negatively related to soil clay content, soil pH, and soil organic matter, whereas PRS and PTK contents were positively correlated with alkali-hydrolyzed nitrogen (AN). According to RDA, the soil clay, AN, available phosphorus (AP), and soil chlorine content (SCL) strongly affected the quality of flue-cured tobacco. The quality of the K326 and Yun87 cultivars was mostly influenced by moisture, whereas the quality of the Hongda cultivar was mostly affected by temperature. In conclusion, compared with soil properties, climatic factors more significantly affect the yield and quality of Honghe flue-cured tobacco leaves.
Background: Soil organic carbon (SOC) is a large reservoir of terrestrial carbon (C); it consists of different fractions of varying complexity and stability. Partitioning SOC into different pools of decomposability help better predict the trend of changes in SOC dynamics under climate change. Information on how physical fractions and chemical structures of SOC are related to climate and vegetation types is essential for spatial modelling of SOC processes and responses to global change factors. Method: Soil samples were collected from multiple representative forest sites of three contrasting climatic zones (i.e. cool temperate, warm temperate, and subtropical) in eastern China. Measurements were made on SOC contents and physical fractions of the 0-20 cm soil layer, and the chemical composition of SOC of the 0-5 cm soil layer, along with measurements and compilation of the basic site and forest stand variables. The long-term effects of temperature, litter inputs, soil characteristics and vegetation type on the SOC contents and factions were examined by means of "space for time substitution" approach and statistical analysis. Result: Mean annual temperature (MAT) varied from 2.1°C at the cool temperate sites to 20.8°C at the subtropical sites. Total SOC of the 0-20 cm soil layer decreased with increasing MAT, ranging from 89.2 g•kg − 1 in cool temperate forests to 57.7 g•kg − 1 in subtropical forests, at an average rate of 1.87% reduction in SOC with a 1°C increase in MAT. With increasing MAT, the proportions of aromatic C and phenolic C displayed a tendency of decreases, whereas the proportion of alkyl C and A/O-A value (the ratio of alkyl C to the sum of O-alkyl C and acetal C) displayed a tendency of increases. Overall, there were no significant changes with MAT and forest type in either the physical fractions or the chemical composition. Based on the relationship between the SOC content and MAT, we estimate that SOC in the top 20 soil layer of forests potentially contribute 6.58-26.3 Pg C globally to the atmosphere if global MAT increases by 1°C-4°C by the end of the twenty-first century, with nearly half of which (cf. 2.87-11.5 Pg C) occurring in the 0-5 cm mineral soils. Conclusion: Forest topsoil SOC content decreased and became chemically more recalcitrant with increasing MAT, without apparent changes in the physical fractions of SOC.
How biotic and abiotic factors influence soil carbon (C) mineralization rate (R S) has recently emerged as one of the focal interests in ecological studies. To determine the relative effects of temperature, soil substrate and microbial community on R s, we conducted a laboratory experiment involving reciprocal microbial inoculations of three zonal forest soils, and measured R S over a 61‐day period at three temperatures (5, 15, and 25°C). Results show that both R s and the cumulative emission of C (R cum), normalized to per unit soil organic C (SOC), were significantly affected by incubation temperature, soil substrate, microbial inoculum treatment, and their interactions (p < .05). Overall, the incubation temperature had the strongest effect on the R S; at given temperatures, soil substrate, microbial inoculum treatment, and their interaction all significantly affected both R s (p < .001) and R cum (p ≤ .01), but the effect of soil substrate was much stronger than others. There was no consistent pattern of thermal adaptation in microbial decomposition of SOC in the reciprocal inoculations. Moreover, when different sources of microbial inocula were introduced to the same soil substrate, the microbial community structure converged with incubation without altering the overall soil enzyme activities; when different types of soil substrate were inoculated with the same sources of microbial inocula, both the microbial community structure and soil enzyme activities diverged. Overall, temperature plays a predominant role in affecting R s and R cum, while soil substrate determines the mineralizable SOC under given conditions. The role of microbial community in driving SOC mineralization is weaker than that of climate and soil substrate, because soil microbial community is both affected, and adapts to, climatic factors and soil matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.