The Houge’zhuang gold deposit, located in the Penglai–Qixia gold belt of the Jiaodong peninsula, is a representative auriferous quartz vein-style deposit. Pyrite is the most common and main gold-bearing mineral and shows complex textures in the Houge’zhuang gold deposit. Study of ore-related pyrite is of great significance for understanding the metallogenesis of this deposit, especially the gold precipitation mechanism. The present study applied systematic microscopic observation, fluid inclusion analysis, electron microprobes,in situ LA-ICP-MS trace-element analysis, and in situ sulfur isotope analyses. Three types of fluid inclusions were identified, among which the ore-forming fluids exhibited medium–low salinity and temperature, with the fluid inclusions mainly comprising H2O and CO2. Three types of pyrites were identified: 1) Py0, characterized by low concentrations of As and Au and low δ34S values (5.51–6.86‰). 2) Py1, found in the gold-quartz-pyrite veins and homogeneous in chemical composition with no obvious zonal growth but with notably more gold and chalcopyrite inclusions. Py1 contained medium and uniform concentrations of As and was Au-rich, with δ34S values ranging from 7.13 to 7.89‰ (mean 7.44‰). 3) Py2 contained arsenic-bearing pyrite and was found in quartz-polymetallic sulfide veins, with distinct As enrichment and As-rich rims of pyrite and growth zoning. Consequently, the primary ore-forming fluids passed through some arsenic and δ34S-rich sedimentary rocks, such as the Jingshan, Fenzishan, and Penglai groups. With the occurrence of stable water-rock interaction, the extracted fluids were enriched for As and δ34S. Furthermore, Au was closely associated with As, visible gold grains tended to occur in association with Py1 at stage II, and invisible gold was related to the Au-As-rich Py2 of stage III. The As-bearing pyrites shared a close spatiotemporal relationship with gold, playing an important role in the formation and exploration of high-grade gold deposits.
The Jiaodong Peninsula is the most important gold mineralization area in China, and the formation of gold deposits is closely related to granitoids. The isotopic ages of the Early Cretaceous granodiorites in the northwestern Jiaodong Peninsula are concentrated in the range of 111~123 Ma, and are coeval with the formation of the gold deposits in the area. However, the studies on the geotectonic settings of the granodiorites, especially their petrogenesis and relationship with gold deposits in the northwestern Jiaodong Peninsula, are scarce. Based on field and petrographic observations, geochemistry, EPMA analysis, zircon U-Pb chronology, and Sr-Nd isotopes of the Early Cretaceous Zhouguan granodiorite in the Jiaodong area, the formation age of Zhouguan granodiorite is determined as 115 Ma ± 0.77 Ma; the analysis of EPMA shows that biotite is mainly composed of Fe-biotite and Mg-biotite, with its MgO content ranging from 9.797% to 11.635%. The crystallization temperature of biotite is in the range of 500 °C~625 °C and the emplacement depth of the rock mass is 3.98~8.71 km. The amphibole in the mass mainly includes magnesiohornblende, pargasite, and magnesiosadanagaite; among them, the former two are of crustal origin, while magnesiosadanagaite is of mantle origin. The crystallization pressure and depth of the former two are in the range of 0.75~3.02 kbar and 2.81~11.4 km, respectively, while the crystallization pressure and depth for the latter is 4.64 kbar and 17.53 km, respectively. The (87Sr/86Sr) values range from 0.710424 to 0.711074 and the (143Nd/144Nd) values range from 0.511530 to 0.511808. The parental magma of the Zhouguan granodiorite is highly oxidized with high-water content that is favorable for Au enrichment. Combined with the Nb-Y and Yb-Ta diagrams, a model describing the formation of Zhouguan granodiorite is proposed.
A suite of Paleogene mafic rocks was collected from boreholes in the Huimin Sag of the Jiyang Depression with the aim of investigating the petrogenesis and nature of mantle source for these rocks and further providing insights into the characteristic of related mantle plume. Whole-rock geochemical data indicate that the mafic rocks have relatively lower SiO2 (42.93%–48.57%) contents and similar characteristics to alkaline basalt and belong to transitional calc-alkaline series. These samples were clearly enriched in LREEs and depleted in HREEs and were also characterized by the enrichment of LILEs, incompatible elements, and HFSEs, similar to those of the Ocean Island Basalt (OIB). In addition, they exhibited Pb enrichment; Y, Pr, and Yb depletion; absence of Nb-Ta anomalies; high Hf and low Zr; and Rb/Yb ratios exceeding 1.0, indicating characteristics of intraplate rift-type alkaline basalt. The samples exhibited (Th/Ta)PM and (La/Nb)PM ratios less than 1 and plotted within the OIB, EMI, and EMII fields, indicating that crustal components had no role in the generation of the rocks. With the exception of individual samples that have a distinctive range of ε Nd values, the majority of samples have complex ε Nd values of -1.15 to 5.56, indicating a mixture of different sources, which was also apparent in the δ18O-87Sr/86Sr diagram, in which the samples plot close to the downward nonlinear curve. Based on the isotopic and trace elemental analyses, these igneous rocks are intraplate rift-type alkaline basalt and are of mantle plume origin. The variations in 87Sr/86Sr, 143Nd/144Nd, ε Nd values, LREEs, and HFSEs were probably due to the different locations of the mantle plume for different samples. The primary magma of the rocks likely originated from the melting of a mantle plume and the further metasomatism of lithospheric mantle, continental, or oceanic crust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.