Collagen VI-related myopathies are disorders of connective tissue presenting with an overlap phenotype combining clinical involvement from the muscle and from the connective tissue. Not all patients displaying related overlap phenotypes between muscle and connective tissue have mutations in collagen VI. Here, we report a homozygous recessive loss of function mutation and a de novo dominant mutation in collagen XII (COL12A1) as underlying a novel overlap syndrome involving muscle and connective tissue. Two siblings homozygous for a loss of function mutation showed widespread joint hyperlaxity combined with weakness precluding independent ambulation, while the patient with the de novo missense mutation was more mildly affected, showing improvement including the acquisition of walking. A mouse model with inactivation of the Col12a1 gene showed decreased grip strength, a delay in fiber-type transition and a deficiency in passive force generation while the muscle seems more resistant to eccentric contraction induced force drop, indicating a role for a matrix-based passive force-transducing elastic element in the generation of the weakness. This new muscle connective tissue overlap syndrome expands on the emerging importance of the muscle extracellular matrix in the pathogenesis of muscle disease.
Critical to the evaluation of potential therapeutics for muscular disease are sensitive and reproducible physiological assessments of muscle function. Because many pre-clinical trials rely on mouse models for these diseases, isolated muscle function has become one of the standards for Go/NoGo decisions in moving drug candidates forward into patients. We will demonstrate the preparation of the extensor digitorum longus (EDL) and diaphragm muscles for functional testing, which are the predominant muscles utilized for these studies. The EDL muscle geometry is ideal for isolated muscle preparations, with two easily accessible tendons, and a small size that can be supported by superfusion in a bath. The diaphragm exhibits profound progressive pathology in dystrophic animals, and can serve as a platform for evaluating many potential therapies countering fibrosis, and promoting myofiber stability. Protocols for routine testing, including isometric and eccentric contractions, will be shown. Isometric force provides assessment of strength, and eccentric contractions help to evaluate sarcolemma stability, which is disrupted in many types of muscular dystrophies. Comparisons of the expected results between muscles from wildtype and dystrophic muscles will also be provided. These measures can complement morphological and biochemical measurements of tissue homeostasis, as well as whole animal assessments of muscle function.
Mouse tail IVDs degenerate after needle puncture, as demonstrated by histological changes and aggrecan degradation. The minimally invasive tail IVD injury model should prove useful to investigators studying mechanisms of IVD degeneration and repair.
Calpain activation has been implicated in the disease pathology of Duchenne muscular dystrophy. Inhibition of calpain has been proposed as a promising therapeutic target, which could lessen the protein degradation and prevent progressive fibrosis. At the same time, there are conflicting reports as to whether elevation of calpastatin, an endogenous calpain inhibitor, alters pathology. We compared the effects of pharmacological calpain inhibition in the mdx mouse using leupeptin and a proprietary compound (C101) that linked the inhibitory portion of leupeptin to carnitine (to increase uptake into muscle). Administration of C101 for 4 wk did not improve muscle histology, function, or serum creatine kinase levels in mdx mice. Mdx mice injected daily with leupeptin (36 mg/kg) for 6 mo also failed to show improved muscle function, histology, or creatine kinase levels. Biochemical analysis revealed that leupeptin administration caused an increase in m-calpain autolysis and proteasome activity, yet calpastatin levels were similar between treated and untreated mdx mice. These data demonstrate that pharmacological inhibition of calpain is not a promising intervention for the treatment of Duchenne muscular dystrophy due to the ability of skeletal muscle to counter calpain inhibitors by increasing multiple degradative pathways.
Genetic tools such as the Cre‐Lox reporter system are powerful aids for tissue‐specific cell tracking. For example, it would be useful in examining intervertebral disc (IVD) cell populations in normal and diseased states. A Cre recombinase and its recognition site, loxP have been adapted from the bacteriophage for use in genetic manipulation. The reporter mice used here express the red fluorescent protein, tdTomato with flanking LoxP sites (Rosa26 TdTomato mice). We compared two different Collagen type II (Col2) promoter constructs that drive Cre‐recombinase expression in mice: (a) Col2‐Cre, which allows constitutive Cre‐recombinase expression under the control of the Col2 promoter/enhancer and (b) Col2‐CreER, which contains a shorter promoter/enhancer region than Col2‐Cre, but has human estrogen binding elements that bind tamoxifen, resulting in Cre‐recombinase expression. The goal of the study is to characterize Cre‐recombinase distribution pattern in Col2‐Cre and Col2‐CreER mice using tdTomato as reporter in the spine. The expression patterns of these two mice were further compared with Col2 gene expression in the native mouse NP and AF tissues by real‐time PCR. We crossed Col2‐Cre mice or Col2‐CreER mice with the tdTomato reporter mice, and compared the tdTomato expression patterns. Col2‐CreER/tdTomato mice were injected with tamoxifen at postnatal day 7 to activate the Cre‐recombinase. TdTomato in the constitutively active Col2‐Cre mice was detected in the nucleus pulposus (NP), the entire annulus fibrosus (AF), and in cartilaginous endplate and growth plate cells in the lower lumbar and coccygeal spine. In contrast, when Col2‐CreER activity was induced by tamoxifen at P7, tdTomato was limited to the inner AF, and was absent from the NP. We have described the differences in Col2 reporter gene expression, in Col2‐Cre/tdTomato and Col2‐Cre‐ER/tdTomato mouse IVD. The information provided here will help to guide future investigations of IVD biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.