The consideration of nonextensivity effects is crucial to the accurate diagnosis of plasma parameters; common plasma nonextensive parameters include electron nonextensive parameter and ion nonextensive parameter, and the former can be measured, while the ion nonextensive parameter cannot be measured yet. Here we show the measurement of ion nonextensive parameter of plasma based on the theory of nonextensive geodesic acoustic modes. We assume that the plasma to be measured can be described by nonextensive statistical mechanics, and on this basis, the nonextensive geodesic acoustic mode theory is established. Utilizing this theory, we have measured the ion nonextensive parameter $${{q}_{{{F}_{\mathrm {i}}}}}= 1.565$$ q F i = 1.565 which cannot be diagnosed even by a nonextensive single electric probe. Our research points out that the proposed measurement method of ion nonextensive parameter may play a role in plasma diagnosis and will help us to grasp the nonextensivity of plasma more precisely. We hope the proposed method of ion nonextensive parameter diagnosis based on the nonextensive geodesic acoustic mode theory can be the starting point of more complex ion nonextensive parameter diagnosis methods. In addition, the measurement of ion nonextensive parameter is closely related to the study of various plasma waves, instabilities, turbulence and abnormal transport, and a defined and quantitative test of nonextensive geodesic acoustic mode theory will bound up deeply with such developments.
It is a great physical challenge to achieve controlled nuclear fusion in magnetic confinement tokamak and solve energy shortage problem for decades. In tokamak plasma, large-scale plasma instability called disruption will halt power production of reactor and damage key components. Prediction and prevention of plasma disruption is extremely urgent and important. However, there is no analytical theory can elucidate plasma disruption physical mechanism yet. Here we show an analytical theory of tokamak plasma disruption based on nonextensive geodesic acoustic mode theory, which can give the physical mechanism of disruption. The proposed theory has not only been confirmed by experimental data of disruption on T-10 device, but also can explain many related phenomena around plasma disruption, filling the gap in physical mechanism of tokamak plasma disruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.