We explore the idea of creating a classifier that can be used to detect presence of hate speech in web discourses such as web forums and blogs. In this work, hate speech problem is abstracted into three main thematic areas of race, nationality and religion. The goal of our research is to create a model classifier that uses sentiment analysis techniques and in particular subjectivity detection to not only detect that a given sentence is subjective but also to identify and rate the polarity of sentiment expressions. We begin by whittling down the document size by removing objective sentences. Then, using subjectivity and semantic features related to hate speech, we create a lexicon that is employed to build a classifier for hate speech detection. Experiments with a hate corpus show significant practical application for a real-world web discourse.
Computational prediction of interactions between drugs and their target proteins is of great importance for drug discovery and design. The difficulties of developing computational methods for the prediction of such potential interactions lie in the rarity of known drug-protein interactions and no experimentally verified negative drug-target interaction sample. Furthermore, target proteins need also to be predicted for some new drugs without any known target interaction information. In this paper, a semi-supervised learning method NetCBP is presented to address this problem by using labeled and unlabeled interaction information. Assuming coherent interactions between the drugs ranked by their relevance to a query drug, and the target proteins ranked by their relevance to the hidden target proteins of the query drug, we formulate a learning framework maximizing the rank coherence with respect to the known drug-target interactions. When applied to four classes of important drug-target interaction networks, our method improves previous methods in terms of cross-validation and some strongly predicted interactions are confirmed by the publicly accessible drug target databases, which indicates the usefulness of our method. Finally, a comprehensive prediction of drug–target interactions enables us to suggest many new potential drug–target interactions for further studies.
BackgroundPerturbation of DNA methylation is frequent in cancers and has emerged as an important mechanism involved in tumorigenesis. To determine how DNA methylation is modified in the genome of primary glioma, we used Methyl-DNA immunoprecipitation (MeDIP) and Nimblegen CpG promoter microarrays to identify differentially DNA methylation sequences between primary glioma and normal brain tissue samples.MethodsMeDIP-chip technology was used to investigate the whole-genome differential methylation patterns in glioma and normal brain tissues. Subsequently, the promoter methylation status of eight candidate genes was validated in 40 glioma samples and 4 cell lines by Sequenom's MassARRAY system. Then, the epigenetically regulated expression of these genes and the potential mechanisms were examined by chromatin immunoprecipitation and quantitative real-time PCR.ResultsA total of 524 hypermethylated and 104 hypomethylated regions were identified in glioma. Among them, 216 hypermethylated and 60 hypomethylated regions were mapped to the promoters of known genes related to a variety of important cellular processes. Eight promoter-hypermethylated genes (ANKDD1A, GAD1, HIST1H3E, PCDHA8, PCDHA13, PHOX2B, SIX3, and SST) were confirmed in primary glioma and cell lines. Aberrant promoter methylation and changed histone modifications were associated with their reduced expression in glioma. In addition, we found loss of heterozygosity (LOH) at the miR-185 locus located in the 22q11.2 in glioma and induction of miR-185 over-expression reduced global DNA methylation and induced the expression of the promoter-hypermethylated genes in glioma cells by directly targeting the DNA methyltransferases 1.ConclusionThese comprehensive data may provide new insights into the epigenetic pathogenesis of human gliomas.
BackgroundThe identification of microRNA-disease associations is critical for understanding the molecular mechanisms of diseases. However, experimental determination of associations between microRNAs and diseases remains challenging. Meanwhile, target diseases need to be revealed for some new microRNAs without any known target disease association information as new microRNAs are discovered each year. Therefore, computational methods for microRNA-disease association prediction have gained a lot of research interest.MethodsHerein, based on the assumption that functionally related microRNAs tend to be associated with phenotypically similar diseases, three inference methods were presented for microRNA-disease association prediction, namely MBSI (microRNA-based similarity inference), PBSI (phenotype-based similarity inference) and NetCBI (network-consistency-based inference). Global network similarity measure was used in the three methods to predict new microRNA-disease associations.ResultsWe tested the three methods on 242 known microRNA-disease associations by leave-one-out cross-validation for prediction evaluation, and achieved AUC values of 74.83%, 54.02% and 80.66%, respectively. The best-performed method NetCBI was then chosen for novel microRNA-disease association prediction. Some associations strongly predicted by NetCBI were confirmed by the publicly accessible databases, which indicated the usefulness of this method. The newly predicted associations were publicly released to facilitate future studies. Moreover, NetCBI was especially applicable to predicting target diseases for microRNAs whose target association information was not available.ConclusionsThe encouraging results suggest that our method NetCBI can not only provide help in identifying novel microRNA-disease associations but also guide biological experiments for scientific research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.