The association between vitamin D status and autism spectrum disorder (ASD) is well-investigated but remains to be elucidated. We quantitatively combined relevant studies to estimate whether vitamin D status was related to ASD in this work. PubMed, EMBASE, Web of Science, and the Cochrane Library were searched to include eligible studies. A random-effects model was applied to pool overall estimates of vitamin D concentration or odds ratio (OR) for ASD. In total, 34 publications involving 20,580 participants were identified in this present study. Meta-analysis of 24 case–control studies demonstrated that children and adolescents with ASD had significantly lower vitamin D concentration than that of the control group (mean difference (MD): −7.46 ng/mL, 95% confidence interval (CI): −10.26; −4.66 ng/mL, p < 0.0001, I2 = 98%). Quantitative integration of 10 case–control studies reporting OR revealed that lower vitamin D was associated with higher risk of ASD (OR: 5.23, 95% CI: 3.13; 8.73, p < 0.0001, I2 = 78.2%). Analysis of 15 case–control studies barring data from previous meta-analysis reached a similar result with that of the meta-analysis of 24 case–control studies (MD: −6.2, 95% CI: −9.62; −2.78, p = 0.0004, I2 = 96.8%), which confirmed the association. Furthermore, meta-analysis of maternal and neonatal vitamin D showed a trend of decreased early-life vitamin D concentration in the ASD group (MD: −3.15, 95% CI: −6.57; 0.26, p = 0.07, I2 = 99%). Meta-analysis of prospective studies suggested that children with reduced maternal or neonatal vitamin D had 54% higher likelihood of developing ASD (OR: 1.54, 95% CI: 1.12; 2.10, p = 0.0071, I2 = 81.2%). These analyses indicated that vitamin D status was related to the risk of ASD. The detection and appropriate intervention of vitamin D deficiency in ASD patients and pregnant and lactating women have clinical and public significance.
Growing evidence suggests that autism spectrum disorder (ASD) is strongly associated with dysbiosis in the gut microbiome, with the exact mechanisms still unclear. We have proposed a novel analytic strategy—quasi-paired cohort—and applied it to a metagenomic study of the ASD microbiome. By comparing paired samples of ASD and neurotypical subjects, we have identified significant deficiencies in ASD children in detoxifying enzymes and pathways, which show a strong correlation with biomarkers of mitochondrial dysfunction. Diagnostic models based on these detoxifying enzymes accurately distinguished ASD individuals from controls, and the dysfunction score inferred from the model increased with the clinical rating scores of ASD. In summary, our results suggest a previously undiscovered potential role of impaired intestinal microbial detoxification in toxin accumulation and mitochondrial dysfunction, a core component of ASD pathogenesis. These findings pave the way for designing future therapeutic strategies to restore microbial detoxification capabilities for patients with ASD.
30Growing evidence suggests that autism spectrum disorder (ASD) is highly associated with 31 dysbiosis in the gut microbiome. However, results of metagenome-based microbiome 32 studies are not always consistent due to great individual diversity that overwhelms 33 disease-associated alterations. Here, we proposed a novel analysis strategy-quasi-paired 34 cohort and applied it to a metagenomic study of ASD microbiomes. By comparing the 35 paired samples of ASD and neurotypical subjects, we identified significant deficiencies in 36 ASD children in detoxifying enzymes and pathways, which showed strong correlations to 37 mitochondrial damage. Diagnostic models with these detoxifying enzymes accurately 38 discriminated ASD individuals from controls, and the dysfunction score inferred from the 39 model increased with the clinical rating scores of ASD. Conclusively, our findings suggest 40 a previously undiscovered mechanism in which impaired microbial detoxification leads to 41 toxicant accumulation and mitochondrion damage contributes to the pathogenesis of ASD. 42 This novel mechanism points to future therapeutic strategies of rebuilding microbial 43 detoxification for ASD. 44 45 MAIN TEXT 46 47 131 Hs37 human genomes by BWA (mem module with default parameters) (http://bio-132
Growing evidence suggests altered oral and gut microbiota in autism spectrum disorder (ASD), but little is known about the alterations and roles of phages, especially within the oral microbiota in ASD subjects. We enrolled ASD (n = 26) and neurotypical subjects (n = 26) with their oral hygiene controlled, and the metagenomes of both oral and fecal samples (n = 104) are shotgun-sequenced and compared. We observe extensive and diverse oral phageome comparable to that of the gut, and clear signals of mouth-to-gut phage strain transfer within individuals. However, the overall phageomes of the two sites are widely different and show even less similarity in the oral communities between ASD and control subjects. The ASD oral phageome exhibits significantly reduced abundance and alpha diversity, but the Streptococcal phages there are atypically enriched, often dominating the community. The over-representation of Streptococcal phages is accompanied by enriched oral Streptococcal virulence factors and Streptococcus bacteria, all exhibiting a positive correlation with the severity of ASD clinical manifestations. These changes are not observed in the parallel sampling of the gut flora, suggesting a previously unknown oral-specific association between the excessive Streptococcal phage enrichment and ASD pathogenesis. The findings provide new evidence for the independent microbiome-mouth-brain connection, deepen our understanding of how the growth dynamics of bacteriophages and oral microbiota contribute to ASD, and point to novel effective therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.