We develop the algebraic polynomial theory for "supertropical algebra," as initiated earlier over the real numbers by the first author. The main innovation there was the introduction of "ghost elements," which also play the key role in our structure theory. Here, we work somewhat more generally over an ordered monoid, and develop a theory which contains the analogs of several basic theorems of classical commutative algebra. This structure enables one to develop a Zariski-type algebraic geometric approach to tropical geometry, viewing tropical varieties as sets of roots of (supertropical) polynomials, leading to an analog of the Hilbert Nullstellensatz.Particular attention is paid to factorization of polynomials. In one indeterminate, any polynomial can be factored into linear and quadratic factors, and although unique factorization may fail, there is a "preferred" factorization that is explained both geometrically and algebraically. The failure of unique factorization in several indeterminates is explained by geometric phenomena described in the paper.
This article introduces a new structure of commutative semiring, generalizing the tropical semiring, and having an arithmetic that modifies the standard tropical operations, i.e., summation and maximum. Although our framework is combinatorial, notions of regularity and invertibility arise naturally for matrices over this semiring; we show that a tropical matrix is invertible if and only if it is regular.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.