Novel TiO2/Ag/SnO2 composites were successfully prepared by a facile one-step reduction approach using stannous chloride as both SnO2 precursor and reducing agent. The Ag nanoparticles with sizes of 2.04–3.94 nm were located on TiO2 matrix and immobilized by the surrounded SnO2. The resulted TiO2/Ag/SnO2 nanocomposites were used as photocatalyst for photodegradation of methylene blue under visible light. The experimental results demonstrated that the visible light photocatalytic activity of the TiO2/Ag/SnO2 was significantly enhanced in comparison with the individual TiO2 or the binary composite (TiO2/Ag or TiO2/SnO2) and the degradation rate was up to about 9.5 times that of commercial TiO2. The photocatalytic activity of the TiO2/Ag/SnO2 composites could be well controlled by simply tuning the dosages of Ag precursor and the optimized activity of the composites was obtained when the dosage of Ag precursor was 2%. Moreover, the TiO2/Ag/SnO2 photocatalyst exhibited high stability for degradation of methylene blue even after four successive cycles.
Graphene carbon nitride (g-C3N4) was successfully prepared by semi-closed pyrolysis and then incorporated into the ultraviolet (UV)-curing system to synthesize different specimens of g-C3N4-hybridized UV-curing (g-C3N4/UV) coatings. The apparent appearance and dispersity g-C3N4 were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The influence of the curing speed and mechanical properties was also tested. The dispersion level of g-C3N4 can be kept less than 1 μm by mechanical mixing. The pencil hardness of composite coatings could be 6H while the adhesion based on glass could be 1 level. The degree of curing of the coating could be obviously improved by the addition of g-C3N4, leading to a 7 percent increase of the gel content. Additionally, the decomposition of hard segments of polyurethane acrylate could be avoided by the use of g-C3N4 resulting in an increasing stability to heat. We found the gel content in an aerobic environment was lower than that in an anaerobic environment. On this basis, the function and mechanism of g-C3N4 was investigated in detail and methods to eliminate the O2 were proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.