The coalescence of droplets on the discharge electrode surface in high humidity environments has rarely been studied, which may affect discharge characteristics. Meanwhile, directional transport of droplets is of great significance for many applications ranging from fluidic processing to thermal management. Here, corona discharge in needle-plate electrode is adopted to explore the coalescence rule of droplets attached on the discharge electrode surface in high-humidity environment, and realize the counterflow of droplets. The experimental results show that the amount of coalesced droplets on the needle electrode surface reaches the maximum under -7.5 kV at relative humidity ~ 94% and ambient temperature ~ 20 ℃. When the applied voltage increases from -6 kV to -11 kV, the droplet moves up 2.76 mm in 5 s. The size of attached droplet depends on the balance of coalescence and evaporation. The coalescence is mainly attributed to the dielectrophoretic force caused by the high electric field gradient. The evaporation is related with the ionic wind generated by the corona discharge. As for the counterflow phenomenon of droplet, we speculate that the high concentration gradient of positive ions near the needle electrode provides a driving force for the negatively charged droplets. Meanwhile, the electrons and negative ions below the needle tip offer a repulsive force to the droplet. The shape and moving direction of the droplet attached on the needle surface can be manipulated by changing the voltage applied to the needle electrode, which shows the potential application value in realizing self-cleaning of electrode, liquid lens and so on.
As an efficient approach to improve visibility, defogging technology is essential for the operation of ports and airports. This paper proposes a new and hybrid defogging technology, i.e. an electric–acoustic defogging method. Specifically, the droplets are charged by corona discharge, which is beneficial to overcome the hydrodynamic interaction force to improve the droplet collision efficiency. Meanwhile, sound waves (especially acoustic turbulence) promote the relative movement of droplets to increase the collision probability. In this study, the effects of acoustic frequency (f), sound pressure level (SPL), and voltage (V) on the droplet growth ratio were studied by orthogonal design analysis. The results of difference analysis and multi-factor variance analysis show that frequency and SPL are the dominant factors that affect the collision of droplets, and the effect of voltage is relatively weak. And f= 400 Hz, SPL = 132 dB, and V = −7.2 kV are the optimal parameters in our experiment. In addition, we further studied the impact of single factor on droplet growth ratio. The results show that there exists an experimental optimal frequency of 400 Hz. The droplet growth ratio increases with SPL and voltage level. The new technology proposed in this paper can provide a new approach for defogging in open space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.