Due to different interface densities and arrangements, the compacted type nanocomposites may yield even lower thermal conductivity than embedded type nanocomposites. In this paper, the phonon transport and thermal conductivity in compacted type nanocomposites ͑nanowires and nanoparticles͒ are investigated using a deterministic phonon Boltzmann transport equation solver. The effects of interface density and characteristic size on the phonon energy transport in nanocomposites are studied. It is found that the silicon-germanium compacted nanoparticle composites can have lower value of thermal conductivity than that of compacted nanowire composites under the same characteristic size ͑21.6% lower when the characteristic size is 3 nm͒.
The direct simulation Monte Carlo (DSMC) method has been employed to analyze the rationality of the 2-D simplification for a 3-D straight rectangular cross-sectional channel. An implicit treatment for low-speed inflow and outflow boundaries for the DSMC of the microchannel flow is employed. The 3-D microchannel flows are simulated with cross aspect ratios in the range of 1 and 5. The calculated flow properties in the 3-D cases are compared with the results of the 2-D case. They show that when the aspect ratio <3, the two extra side walls in the 3-D case have significant effects on the heat transfer and flow properties. When the aspect ratio is increased, the flow pattern and heat transfer characteristics tend to approach those of 2-D results. The 2-D simplification is found to be reasonable only when the cross aspect ratio is greater than 5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.