Tissue-engineering scaffolds should be analogous to native extracellular matrix (ECM) in terms of both chemical composition and physical structure. Polymeric nanofiber matrix is similar, with its nanoscaled nonwoven fibrous ECM proteins, and thus is a candidate ECM-mimetic material. Techniques such as electrospinning to produce polymeric nanofibers have stimulated researchers to explore the application of nanofiber matrix as a tissue-engineering scaffold. This review covers the preparation and modification of polymeric nanofiber matrix in the development of future tissue-engineering scaffolds. Major emphasis is also given to the development and applications of aligned, core shell-structured, or surface-functionalized polymer nanofibers. The potential application of polymer nanofibers extends far beyond tissue engineering. Owing to their high surface area, functionalized polymer nanofibers will find broad applications as drug delivery carriers, biosensors, and molecular filtration membranes in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.