The great applications of nuclear power for the most promising clean energy sources have been challenged by a large amount of radioactive wastewater generated, specifically the Cs + /Co 2+ separation for nuclear waste storage, retreatment or recycling of radioactive wastewater, because of their wide difference in half-life and high heat release. In this work, graphene oxide membranes (GOMs) with interlayer spacing controlled by cations were used to separate mixed Cs + /Co 2+ ions. The separation factors of Cs + /Co 2+ for K + -controlled graphene oxide membranes (K-GOMs) was 2∼3 times higher than that of GOMs without treatment. In addition, the separation factors of Cs + /Co 2+ for K-GOMs can be further enhanced with the increase of membranes thickness and change the initial ratios of the two ions. Typically, the separation factors of K-GOMs with a thickness of ∼300 nm reached up to 73.7 ± 3.9. Moreover, the K-GOM showed outstanding stability of the separation performance under long-term operation within 7 days. First-principles calculation revealed that the enhanced ionic selectivity of controlled GOM is induced by the difference of adsorption energies between the hydrated cations and aromatic rings, resulting in a significant increase in the mobility differences between Cs + and Co 2+ through a fixed narrow interlayer spacing. This study demonstrated excellent separation performances of GO-based membranes based on their size-exclusion effect rather than electrostatic repulsion effect, and we believe this work can enable potential efficient treatment technologies for radioactive wastewater needed urgently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.