We conduct molecular dynamics (MD) simulations to study the thermal conductivity of freestanding silicene and silicene supported on an amorphous silicon dioxide (SiO2) substrate in the temperature range from 300 to 900 K. The results show that the thermal conductivity decreases with increasing temperature and that the presence of the SiO2 substrate results in a great reduction, up to 78% at 300 K, to the thermal conductivity of silicene. With atomic trajectories from equilibrium MD simulations, we perform spectral energy density analysis to compute the thermal conductivities, spectral phonon relaxation times, and spectral phonon mean free paths (MFPs) of freestanding and supported silicene at 300 K. When silicene is put on a SiO2 substrate, the phonon relaxation times are decreased from 1–13 ps to less than 1 ps, and the phonon MFPs are reduced from 10–120 nm to 0–20 nm. We also calculate the thermal conductivity contributions from all phonon branches and find that the thermal conductivities of freestanding and supported silicene are mainly (>85%) contributed by the longitudinal and transverse acoustic phonons, while the out-of-plane acoustic phonons have a contribution less than 3%. Our study predicts the reduction of the thermal conductivity of silicene due to substrate effects and provides a fundamental understanding of the reduction in terms of the spectral phonon relaxation times and MFPs.
Abstract:Forest mapping is an important source of information for assessing woodland resources and a key issue for any National Forest Inventory (NFI). In the present study, a detailed wall-to-wall forest cover map was generated for all of Switzerland, which meets the requirement of the Swiss NFI forest definition. The workflow is highly automated and based on digital surface models from image-based point clouds of airborne digital sensor data. It fully takes into account the four key criteria of minimum tree height, crown coverage, width, and land use. The forest cover map was validated using almost 10,000 terrestrial and stereo-interpreted NFI plots, which verified 97% agreement overall. This validation implies different categories such as five production regions, altitude, tree type, and distance to the forest border. Overall accuracy was lower at forest borders but increased with increasing distance from the forest border. Commission errors remained stable at around 10%, but increased to 17.6% at the upper tree line. Omission errors were low at 1%-10%, but also increased with altitude and mainly occurred at the upper tree line (19.7%). The main reasons for this are the lower image quality and the NFI height definition for forest which apparently excludes shrub forest from the mask. The presented forest mapping approach is superior to existing products due to its national coverage, high level of detail, regular updating, and implementation of the land use criteria.
Controlling thermomechanical anisotropy is important for emerging heat management applications such as thermal interface and electronic packaging materials. Whereas many studies report on thermal transport in anisotropic nanocomposite materials, a fundamental understanding of the interplay between mechanical and thermal properties is missing, due to the lack of measurements of direction‐dependent mechanical properties. In this work, exceptionally coherent and transparent hybrid Bragg stacks made of strictly alternating mica‐type nanosheets (synthetic hectorite) and polymer layers (polyvinylpyrrolidone) were fabricated at large scale. Distinct from ordinary nanocomposites, these stacks display long‐range periodicity, which is tunable down to angstrom precision. A large thermal transport anisotropy (up to 38) is consequently observed, with the high in‐plane thermal conductivity (up to 5.7 W m−1 K−1) exhibiting an effective medium behavior. The unique hybrid material combined with advanced characterization techniques allows correlating the full elastic tensors to the direction‐dependent thermal conductivities. We, therefore, provide a first analysis on how the direction‐dependent Young's and shear moduli influence the flow of heat.
Although extensive experimental and theoretical works have been conducted to understand the ballistic and diffusive phonon transport in nanomaterials recently, direct observation of temperature and thermal nonequilibrium of different phonon modes has not been realized. Herein, we have developed a method within the framework of molecular dynamics to calculate the temperatures of phonon in both real and phase spaces. Taking silicon thin film and graphene as examples, we directly obtained the spectral phonon temperature (SPT) and observed the local thermal nonequilibrium between the ballistic and diffusive phonons. Such nonequilibrium also generally exists across interfaces and is surprisingly large, and it provides an additional thermal interfacial resistance mechanism. Our SPT results directly show that the vertical thermal transport across the dimensionally mismatched graphene/substrate interface is through the coupling between flexural acoustic phonons of graphene and the longitudinal phonons in the substrate with mode conversion. In the dimensionally matched interfaces, e.g. graphene/graphene junction and graphene/boron nitride planar interfaces, strong coupling occurs between the acoustic phonon modes on both sides, and the coupling decreases with interfacial mixing. The SPT method together with the spectral heat flux can eliminate the size effect of the thermal conductivity prediction induced from ballistic transport. Our work shows that in thin films and across interfaces, phonons are in local thermal nonequilibrium. * λQλ ,whereQ λ (t) is the time derivative of normal mode amplitude, which is given by the Fourier transform of atomic arXiv:1703.10957v1 [cond-mat.mes-hall]
Small molecule organic semiconductors (OSCs) suffer from their uncontrolled nucleation and growth during solution processing limiting their functionality in electronic devices. In this work, we present a new method based on dip-coating a blend consisting of OSC and insulating polymer to control the crystallization of the active film for organic field-effect transistors. A small fraction of amorphous poly(methyl methacrylate) (PMMA) efficiently improves the crystallization of dip-coated small molecule OSCs, α,ω-dihexylquaterthiophene (DH4T) and diketopyrrolopyrrole-sexithiophene (DPP6T). The maximum charge carrier mobilities of dip-coated OSC:PMMA films are significantly higher than drop-cast blend ones and comparable with OSC single crystals. The high charge carrier mobility originates from a continuous alignment of the crystalline films and stratified OSC and PMMA layers. The improved crystallization is attributed to two mechanisms: firstly, the polymer binder leads to a viscosity gradient at the meniscus during dip-coating, facilitating the draw of solute and thus mass transport. Secondly, the polymer binder solidifies at the bottom layer, reducing the nucleation barrier height of small molecule OSC. Our findings demonstrate that a small fraction of a polymer binder during dip-coating efficiently balances the mass transport during Max Planck Institute for Polymer Research -Author's Manuscript 2 solution processing and improves the crystallization as well as the electronic properties of small molecule OSC films. Crystallization of small molecular organic semiconductors (OSCs) during meniscusguided coating was enhanced by blending with a minor amount of an insulating polymer binder. The polymer binder increased mass transport and formed a bottom layer reducing the nucleation barrier height for OSC crystallization. The aligned crystalline films with stratified OSC/polymer layers contribute to a high charge transport in field effect transistors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.