A facultative parasite of cereals, Fusarium culmorum is a soil-, air-and seed-borne fungus causing foot and root rot, fusarium seedling blight, and especially Fusarium head blight, a spike disease leading to decreased yield and mycotoxin contamination of grain. In the present study, we tested changes in expression of wheat genes (B2H2, ICS, PAL, and PR2) involved in defence against diseases. We first compared expression of the analysed genes in seedlings of non-inoculated and artificially inoculated wheat (variety Bohemia). The second part of the experiment compared expression of these genes in seedlings grown under various treatment conditions. These treatments were chosen to determine the effects of prochloraz, sodium bicarbonate, ergosterol, aescin and potassium iodide on expression of the analysed defence genes. In addition to the inoculated and non-inoculated cultivar Bohemia, we additionally examined two other varieties of wheat with contrasting resistance to Fusarium sp. infection. These were the blue aleurone layer variety Scorpion that is susceptible to Fusarium sp. infection and variety V2-49-17 with yellow endosperm and partial resistance to Fusarium sp. infection. In this manner, we were able to compare potential effects of inductors upon defence gene expression among three varieties with different susceptibility to infection but also between inoculated and non-inoculated seedlings of a single variety. The lowest infection levels were detected in the sodium bicarbonate treatment. Sodium bicarbonate had not only negative influence on Fusarium growth but also positively affected expression of plant defence genes. Expression of the four marker genes shown to be important in plant defence was significantly affected by the treatments. The greatest upregulation in comparison to the water control was identified under all treatments for the B2H2 gene. Only expression of PAL under the ergosterol and prochloraz treatments were not statistically significant.
18A facultative parasite of cereals, Fusarium culmorum is a soil-, air-and seed-borne fungus causing foot 19 and root rot, fusarium seedling blight, and especially Fusarium head blight, a spike disease leading to 20 decreased yield and mycotoxin contamination of grain. In the present study, we tested changes in 21 expression of wheat genes (B2H2, ICS, PAL, and PR2) involved in defence against diseases. We first 22 2 36 under all treatments for the B2H2 gene. Only expression of PAL under the ergosterol and prochloraz 37 treatments were not statistically significant. 38 39 Keywords Fusarium head blight, Fusarium seedling blight, aescin, ergosterol, sodium bicarbonate, 40 chitinase, qPCR, potassium iodide 41 42
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.