AimsThe role of nitric oxide (NO) in heart failure (HF) is complex and remains controversial. We tested the hypothesis that the role of NO in isolated atria and cardiomyocytes is altered in isoproterenol-induced HF. Methods and resultsRats received isoproterenol (ISO, 5 mg/kg/day, intraperitoneally) or vehicle for 1 week. Haemodynamic parameters were obtained by left ventricular catheterization. Effects of NOS inhibition on isolated atria and on electrically paced left ventricular myocytes were determined. Additionally, expressions of nitric oxide synthases and their allosteric modulators hsp90, caveolin-1, and caveolin-3 proteins in the left ventricles were measured. ISO increased left ventricular mass by 33% and decreased indices of left ventricular systolic and diastolic function dp/dt min and dp/dt max (both P , 0.05). Isolated atria from HF rats had a lower spontaneous beating rate (P , 0.05). NOS inhibition by L-NAME increased basal frequency and attenuated the positive chronotropic effect of beta-adrenergic stimulation in the HF group (P , 0.05). Ventricular myocytes from failing hearts had impaired cell shortening. L-NAME decreased contractility of control, but not failing myocytes. Left ventricular expressions of eNOS, hsp90, iNOS, but not nNOS or caveolins, were increased. ConclusionDespite the increased capacity for NO synthesis in isoproterenol-induced HF, NO does not sustain contractility of failing myocytes. NO may contribute to the decreased basal heart rate and it may accelerate beta-adrenergic stimulation of chronotropy.--
We report on the first detailed use of broadband cavity enhanced absorption spectroscopy (BBCEAS) as a detection system for immunoassay. A vertical R ≥ 0.99 optical cavity was integrated with a motorized XY stage, which functioned as a receptacle for 96-well microtiter plates. The custom-built cavity enhanced microplate reader was used to make measurements on a commercially available osteocalcin sandwich ELISA kit. A 30-fold increase in path length was obtained with a minimum detectable change in the absorption coefficient, αmin(t), of 5.3 × 10–5 cm–1 Hz–1/2. This corresponded to a 39-fold increase in the sensitivity of measurement when directly compared to measurements in a conventional microplate reader. Separate measurements of a standard STREP-HRP colorimetric reaction in microtiter plates of differing optical quality produced an increase in sensitivity of up to 115-fold compared to a conventional microplate reader. The sensitivity of the developed setup compared favorably with previous liquid-phase cavity enhanced studies and approaches the sensitivity of typical fluorometric ELISAs. It could benefit any biochemical test which uses single pass absorption as a detection method, through either the label free detection of biologically important molecules at lower concentrations or the reduction in the amount of expensive biochemicals needed for a particular test, leading to cheaper tests.
The first application of liquid-phase broadband cavity enhanced spectroscopy (BBCEAS) to the measurement of stopped-flow kinetics is reported. The stopped-flow technique is widely used for the study of the kinetics of fast liquid-phase reactions down to millisecond timescales. UV-visible absorption spectroscopy is commonly used as the detection method. Increased sensitivity can potentially allow reactions which are too fast to be measured, to be studied by slowing down the reaction rate through the use of lower concentration of reactants. A simple low cost BBCEAS experimental setup was coupled to a commercial stopped-flow instrument. Comparative standard absorption measurements were also made using a UV-visible double-beam spectrometer as the detector. Measurements were made on the reaction of potassium ferricyanide with sodium ascorbate under pseudo-first order conditions at pH 8 and pH 9.2 A cavity enhancement factor (CEF) of 78 at 434 nm was obtained whilst the minimum detectable change in the absorption coefficient α(t), was 1.35 × 10 cm Hz. The kinetic data at pH 9.2 was too fast to be measured using conventional spectroscopy, whilst the BBCEAS measurements allowed 30 fold lower concentration of reactants to be used which slowed down the reaction rate enough to allow the rate constant to be determined. The BBCEAS results showed a 58 fold improvement in sensitivity over the conventional measurements and also compared favourably with the relatively few previous liquid-phase cavity enhanced kinetic studies which have been performed using significantly more complex and expensive experimental setups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.