The ionizing radiation belongs to the basic physical factors that can be measured. We forget often about its risks and the possible damage to our health. The imaging methods which use the ionizing radiation increase the diagnostics quality and they have become a certainty for many medical workers. Therefore, they are being used without rational thinking many times. With this is related to increasing the cumulative dose of patients. Next problem can be radiation safety knowledge of medical workers. The enormous increase in the use of sources ionizing radiation in medicine and rapid development, there may be a disproportionate acquisition of radiation safety knowledge of healthcare workers. At the same time, constant attention must be paid to the biological effects of radiation and realize epidemiology studies. In all the areas mentioned the public health has space. However, it is sad that presently, the radiation safety is not considered important enough in Public Health. Based on many sources, it is safe to say that this is a major problem, because the public health itself can play an important role in radiation safety. It is important to point out, that safety and effectivity of using the source of ionizing radiation is one of the main components of Good Medical Practice.
The coronary CT angiography (CCTA) is a frequent diagnostic method connected with large variability of effective dose. Therefore, it is the type of examination where optimization is very important and the use of a national diagnostic reference level (DRL) recommended. In Slovakia the DRL for interventional radiology examinations until now fails. The objective of our study was to propose the national DRL for CCTA examinations in Slovak Republic, on the basis of a cross-sectional multicenter study, performed in four departments of radiology. The study was realized in 2014-16 in a sample of 1725 patients undergoing CCTA examination. The proposed DRL expressed by CTDIVOL is 45 mGy and of DLP is 510 mGy cm.
Interventional radiology represents subspecialty of radiology, which does not use imaging modalities only for diagnostics, but mostly for therapeutic purposes. Realisation of interventional procedures is done through X-rays, which replaces direct visual control done by interventional radiologist or cardiologist. For the targeted reduction of the radiation exposure, the interventional radiology staff use personal protective equipment. Usually, aprons with lead-equivalent are used, which provide protection for 75% of the radiosensitive organs. As the eye lens and thyroid gland belong to the radiosensitive organs, lead eyeglasses and thyroid collar are commonly used for their protection. Cap and gloves with lead-equivalent can be utilised as an additional personal protective equipment, that is commercially available. Innovative protection systems, such as mobile radiation protection cabin and suspended radiation protection, have been designed to ensure better radiation protection and safety. These systems provide the comfort for the interventional radiologists at work, while offering better protection against ionising radiation.
Introduction: Gastric emptying scintigraphy (GES) is a safe, noninvasive method for assessing the ability of the stomach to empty which has been used clinically for many years. It is considered as a “gold standard” to assess gastric emptying of both solids and liquids allowing assessment of early, mid and late emptying, each of which may be altered by pathology. The aim of the study was to analyse standard diagnostic approach and evaluate patients` radiation exposure, who underwent GES in Slovakia. Methods: A retrospective cohort study included 55 patients from 2 departments of nuclear medicine (department A, B). Patients’ radiation exposure was determined by dosimetry program IDAC-Dose2.1. The radiopharmaceutical 99mTc-DTPA, always with the same activity, was applied orally to patients at Department B. The applied activity of the radiopharmaceutical at GES was 185 MBq. The radiopharmaceutical 99mTc MAA, with various activity, was applied orally to patients at Department A. Results: According to ICRP60, the eff ective dose (ED) of every patient undergoing GES was 0.77 mSv and, according to ICRP103, the dose was 0.836 mSv at Department B. Patients at Department A were exposed to ionizing radiation with 5-times lower intensity, compared with patients at Department B. It was caused by radiopharmaceutical activity correction. The ED medians according to ICRP60, and according to ICRP103 were 0.167 mSv (range 0.105–0.208 mSv) and 0.181 mSv (range 0.113–0.226 mSv) at Department A, respectively. Discussion: Adequate correction of applied radiopharmaceutical activity is an essential part of GES guidelines and in accordance with ALARA principles. For the accuracy of GES examination, it is necessary to follow a standard 4-hour protocol and an approach which ensures full-featured utilization of the examination while decreasing patient`s radiation exposure. Conclusion: The results of our study show relatively low ED associated with GES, but also confi rm that the GES methodology significantly affects the patient`s radiation exposure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.