The Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico was recently established to better understand the impacts of prenatal exposure to inorganic arsenic (iAs). In the present study, we examined a subset (n=40) of newborn cord blood samples for microRNA (miRNA) expression changes associated with in utero arsenic exposure. Levels of iAs in maternal drinking water (DW-iAs) and maternal urine were assessed. Levels of DW-iAs ranged from below detectable values to 236 μg/L (mean=51.7 μg/L). Total arsenic in maternal urine (U-tAs) was defined as the sum of iAs and its monomethylated and dimethylated metabolites (MMAs and DMAs, respectively) and ranged from 6.2 to 319.7 μg/L (mean=64.5 μg/L). Genome-wide miRNA expression analysis of cord blood revealed 12 miRNAs with increasing expression associated with U-tAs. Transcriptional targets of the miRNAs were computationally predicted and subsequently assessed using transcriptional profiling. Pathway analysis demonstrated that the U-tAs-associated miRNAs are involved in signaling pathways related to known health outcomes of iAs exposure including cancer and diabetes mellitus. Immune response-related mRNAs were also identified with decreased expression levels associated with U-tAs, and predicted to be mediated in part by the arsenic-responsive miRNAs. Results of this study highlight miRNAs as novel responders to prenatal arsenic exposure that may contribute to associated immune response perturbations.
An automated system for hydride generation -cryotrapping-gas chromatography -atomic absorption spectrometry with the multiatomizer is described. Arsines are preconcentrated and separated in a Chromosorb filled U-tube. An automated cryotrapping unit, employing nitrogen gas formed upon heating in the detection phase for the displacement of the cooling liquid nitrogen, has been developed. The conditions for separation of arsines in a Chromosorb filled U-tube have been optimized. A complete separation of signals from arsine, methylarsine, dimethylarsine, and trimethylarsine has been achieved within a 60 s reading window. The limits of detection for methylated arsenicals tested were 4 ng l −1 . Selective hydride generation is applied for the oxidation state specific speciation analysis of inorganic and methylated arsenicals. The arsines are generated either exclusively from trivalent or from both tri-and pentavalent inorganic and methylated arsenicals depending on the presence of L-cysteine as a prereductant and/or reaction modifier. A TRIS buffer reaction medium is proposed to overcome narrow optimum concentration range observed for the L-cysteine modified reaction in HCl medium. The system provides uniform peak area sensitivity for all As species. Consequently, the calibration with a single form of As is possible. This method permits a highthroughput speciation analysis of metabolites of inorganic arsenic in relatively complex biological matrices such as cell culture systems without sample pretreatment, thus preserving the distribution of tri-and pentavalent species.
Prenatal exposure to inorganic arsenic (iAs) is detrimental to the health of newborns and increases the risk of disease development later in life. Here we examined a subset of newborn cord blood leukocyte samples collected from subjects enrolled in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico, who were exposed to a range of drinking water arsenic concentrations (0.456-236 µg/l). Changes in iAs-associated DNA 5-methylcytosine methylation were assessed across 424,935 CpG sites representing 18,761 genes and compared with corresponding mRNA expression levels and birth outcomes. In the context of arsenic exposure, a total of 2919 genes were identified with iAs-associated differences in DNA methylation. Site-specific analyses identified DNA methylation changes that were most predictive of gene expression levels where CpG methylation within CpG islands positioned within the first exon, the 5' untranslated region and 200 bp upstream of the transcription start site yielded the most significant association with gene expression levels. A set of 16 genes was identified with correlated iAs-associated changes in DNA methylation and mRNA expression and all were highly enriched for binding sites of the early growth response (EGR) and CCCTC-binding factor (CTCF) transcription factors. Furthermore, DNA methylation levels of 7 of these genes were associated with differences in birth outcomes including gestational age and head circumference.These data highlight the complex interplay between DNA methylation, functional changes in gene expression and health outcomes and underscore the need for functional analyses coupled to epigenetic assessments.
BackgroundHuman exposures to inorganic arsenic (iAs) have been linked to an increased risk of diabetes mellitus. Recent laboratory studies showed that methylated trivalent metabolites of iAs may play key roles in the diabetogenic effects of iAs. Our study examined associations between chronic exposure to iAs in drinking water, metabolism of iAs, and prevalence of diabetes in arsenicosis-endemic areas of Mexico.MethodsWe used fasting blood glucose (FBG), fasting plasma insulin (FPI), oral glucose tolerance test (OGTT), glycated hemoglobin (HbA1c), and insulin resistance (HOMA-IR) to characterize diabetic individuals. Arsenic levels in drinking water and urine were determined to estimate exposure to iAs. Urinary concentrations of iAs and its trivalent and pentavalent methylated metabolites were measured to assess iAs metabolism. Associations between diabetes and iAs exposure or urinary metabolites of iAs were estimated by logistic regression with adjustment for age, sex, hypertension and obesity.ResultsThe prevalence of diabetes was positively associated with iAs in drinking water (OR 1.13 per 10 ppb, p < 0.01) and with the concentration of dimethylarsinite (DMAsIII) in urine (OR 1.24 per inter-quartile range, p = 0.05). Notably, FPI and HOMA-IR were negatively associated with iAs exposure (β -2.08 and -1.64, respectively, p < 0.01), suggesting that the mechanisms of iAs-induced diabetes differ from those underlying type-2 diabetes, which is typically characterized by insulin resistance.ConclusionsOur study confirms a previously reported, but frequently questioned, association between exposure to iAs and diabetes, and is the first to link the risk of diabetes to the production of one of the most toxic metabolites of iAs, DMAsIII.
Recent research of the metabolism and biological effects of arsenic has profoundly changed our understanding of the role of metabolism in modulation of toxicity and carcinogenicity of this metalloid. Historically, the enzymatic conversion of inorganic arsenic to mono- and dimethylated species has been considered a major mechanism for detoxification of inorganic arsenic. However, compelling experimental evidence obtained from several laboratories suggests that biomethylation, particularly the production of methylated metabolites that contain trivalent arsenic, is a process that activates arsenic as a toxin and a carcinogen. This article summarizes this evidence and provides new data on a) the toxicity of methylated trivalent arsenicals in mammalian cells, b) the effects of methylated trivalent arsenicals on gene transcription, and c) the mechanisms involved in arsenic methylation in animal and human tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.