Fanconi anemia (FA) is a devastating genetic disease, associated with genomic instability and defects in DNA interstrand cross-link (ICL) repair. The FA repair pathway is not thought to be conserved in budding yeast, and although the yeast Mph1 helicase is a putative homolog of human FANCM, yeast cells disrupted for MPH1 are not sensitive to ICLs. Here, we reveal a key role for Mph1 in ICL repair when the Pso2 exonuclease is inactivated. We find that the yeast FANCM ortholog Mph1 physically and functionally interacts with Mgm101, a protein previously implicated in mitochondrial DNA repair, and the MutSα mismatch repair factor (Msh2-Msh6). Co-disruption of MPH1, MGM101, MSH6, or MSH2 with PSO2 produces a lesion-specific increase in ICL sensitivity, the elevation of ICL-induced chromosomal rearrangements, and persistence of ICL-associated DNA double-strand breaks. We find that Mph1-Mgm101-MutSα directs the ICL-induced recruitment of Exo1 to chromatin, and we propose that Exo1 is an alternative 5′-3′ exonuclease utilised for ICL repair in the absence of Pso2. Moreover, ICL-induced Rad51 chromatin loading is delayed when both Pso2 and components of the Mph1-Mgm101-MutSα and Exo1 pathway are inactivated, demonstrating that the homologous recombination stages of ICL repair are inhibited. Finally, the FANCJ- and FANCP-related factors Chl1 and Slx4, respectively, are also components of the genetic pathway controlled by Mph1-Mgm101-MutSα. Together this suggests that a prototypical FA–related ICL repair pathway operates in budding yeast, which acts redundantly with the pathway controlled by Pso2, and is required for the targeting of Exo1 to chromatin to execute ICL repair.
DNA double-strand breaks (DSB) are considered to be a severe form of DNA damage, because if left unrepaired, they can cause a cell death and, if misrepaired, they can lead to genomic instability and, ultimately, the development of cancer in multicellular organisms. The budding yeast Saccharomyces cerevisiae repairs DSB primarily by homologous recombination (HR), despite the presence of the KU70, KU80, DNA ligase IV and XRCC4 homologues, essential factors of the mammalian non-homologous end-joining (NHEJ) machinery. S. cerevisiae, however, lacks clear DNA-PKcs and ARTEMIS homologues, two important additional components of mammalian NHEJ. On the other hand, S. cerevisiae is endowed with a regulatory NHEJ component, Nej1, which has not yet been found in other organisms. Furthermore, there is evidence in budding yeast for a requirement for the Mre11/Rad50/Xrs2 complex for NHEJ, which does not appear to be the case either in Schizosaccharomyces pombe or in mammals. Here, we comprehensively describe the functions of all the S. cerevisiae NHEJ components identified so far and present current knowledge about the NHEJ process in this organism. In addition, this review depicts S. cerevisiae as a powerful model system for investigating the utilization of either NHEJ or HR in DSB repair.
The RAD51 gene was disrupted in three different parental wild-type strains to yield three rad51 null strains with different genetic background. The rad51 mutation sensitizes yeast cells to the toxic and mutagenic effects of H2O2, suggesting that Rad51-mediated repair, similarly to that of RecA-mediated, is relevant to the repair of oxidative damage in S. cerevisiae. Moreover, pulsed-field gel electrophoresis analysis demonstrated that increased sensitivity of the rad51 mutant to H2O2 is accompanied by its decreased ability to repair double-strand breaks induced by this agent. Our results show that ScRad51 protects yeast cells from H2O2-induced DNA double-strand breakage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.