Parmelioid lichens are a diverse and ubiquitous group of foliose lichens. Generic delimitation in parmelioid lichens has been in a state of flux since the late 1960s with the segregation of the large, heterogeneous genus Parmelia into numerous smaller genera. Recent molecular phylogenetic studies have demonstrated that some of these new genera were monophyletic, some were not, and others, previously believed to be unrelated, fell within single monophyletic groups, indicating the need for a revision of the generic delimitations. This study aims to give an overview of current knowledge of the major clades of all parmelioid lichens. For this, we assembled a dataset of 762 specimens, including 31 of 33 currently accepted parmelioid genera (and 63 of 84 accepted genera of Parmeliaceae). We performed maximum likelihood and Bayesian analyses of combined datasets including two, three and four loci. Based on these phylogenies and the correlation of morphological and chemical characters that characterize monophyletic groups, we accept 27 genera within nine main clades. We re‐circumscribe several genera and reduce Parmelaria to synonymy with Parmotrema. Emodomelanelia Divakar & A. Crespo is described as a new genus (type: E. masonii). Nipponoparmelia (Kurok.) K.H. Moon, Y. Ohmura & Kashiw. ex A. Crespo & al. is elevated to generic rank and 15 new combinations are proposed (in the genera Flavoparmelia, Parmotrema, Myelochroa, Melanelixia and Nipponoparmelia). A short discussion of the accepted genera is provided and remaining challenges and areas requiring additional taxon sampling are identified.
Biogeographical studies of lichens used to be complicated because of the large distribution ranges of many species. Molecular systematics has revitalized lichen biogeography by improving species delimitation and providing better information about species range limitations. This study focuses on the major clade of tropical parmelioid lichens, which share a chemical feature, the presence of isolichenan in the cell wall, and a morphological feature, microscopic pores in the uppermost layer. Our previous phylogenetic studies revealed that the largest genus in this clade, Hypotrachyna, is polyphyletic with a clade mainly distributed in South and East Asia clustering distant from the core of the genus. To divide the Hypotrachyna clade into monophyletic groups and to reevaluate morphological and chemical characters in a phylogenetic context, we sampled ITS, nuclear large subunit (nuLSU) and mitochondrial small subunit (mtSSU) rDNA sequences from 77 species. We are erecting the new genus Remototrachyna for a core group of 15 former Hypotrachyna species. The segregation of Remototrachyna from Hypotrachyna receives support from morphological and chemical data, as well from maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses of the DNA. We used a likelihood approach to study the geographic range evolution of Remototrachyna and Bulbothrix, which are sister groups. This analysis suggests that the ancestral range of Remototrachyna was restricted to India and that subsequent long-distance dispersal is responsible for the pantropical occurrence of two species of Remototrachyna.
The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRaP URL' above for details on accessing the published version and note that access may require a subscription.
Pollen, fungi, and bacteria are the main microscopic biological entities present in outdoor air, causing allergy symptoms and disease transmission and having a significant role in atmosphere dynamics. Despite their relevance, a method for monitoring simultaneously these biological particles in metropolitan environments has not yet been developed. Here, we assessed the use of the Hirst-type spore trap to characterize the global airborne biota by high-throughput DNA sequencing, selecting regions of the 16S rRNA gene and internal transcribed spacer for the taxonomic assignment. We showed that aerobiological communities are well represented by this approach. The operational taxonomic units (OTUs) of two traps working synchronically compiled Ͼ87% of the total relative abundance for bacterial diversity collected in each sampler, Ͼ89% for fungi, and Ͼ97% for pollen. We found a good correspondence between traditional characterization by microscopy and genetic identification, obtaining more-accurate taxonomic assignments and detecting a greater diversity using the latter. We also demonstrated that DNA sequencing accurately detects differences in biodiversity between samples. We concluded that high-throughput DNA sequencing applied to aerobiological samples obtained with Hirst spore traps provides reliable results and can be easily implemented for monitoring prokaryotic and eukaryotic entities present in the air of urban areas.IMPORTANCE Detection, monitoring, and characterization of the wide diversity of biological entities present in the air are difficult tasks that require time and expertise in different disciplines. We have evaluated the use of the Hirst spore trap (an instrument broadly employed in aerobiological studies) to detect and identify these organisms by DNA-based analyses. Our results showed a consistent collection of DNA and a good concordance with traditional methods for identification, suggesting that these devices can be used as a tool for continuous monitoring of the airborne biodiversity, improving taxonomic resolution and characterization together. They are also suitable for acquiring novel DNA amplicon-based information in order to gain a better understanding of the biological particles present in a scarcely known environment such as the air.
Parmelioid lichens form the largest monophyletic group within the Parmeliaceae, a family distributed worldwide. The genus Parmelina was described by Hale (1976a) accommodating species from both hemispheres. We have employed parsimony, Bayesian and maximum likelihood analyses of a combined data set of nu ITS, LSU and mt SSU rDNA sequences to (1) test the monophyly of Parmelina and (2) to elucidate the generic status and phylogenetic position of the Australasian species. Twenty-one new sequences were generated in this study. Our results provide evidence that Parmelina is polyphyletic and the species fall into two major well-supported groups (Groups I and II). The Australasian species of Parmelina and two species of Canoparmelia (C. pruinata and C. macrospora) form Group I, which is nested within the parmotremoid genera of Parmeliaceae, Parmelina species from the northern hemisphere including those from western North America and the Mediterranean basin form a monophyletic group (Group II), which is sister to the East Asian temperate genus Myelochroa. Morphological and chemical features were reevaluated considering this observed phylogeny. Some morphological features like lobe morphology, several traits in the excipulum and geography are useful in characterizing the monophyletic lineage of the Australasian Parmelina/Canoparmelina species. This lineage is described as the new genus Austroparmelina. Thirteen new combinations in the new genus are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.