With emerging fungal infections and developing resistance, there is a need for understanding the mechanisms of resistance as well as its clinical impact while planning the treatment strategies. Several approaches could be taken to overcome the problems arising from the management of fungal diseases. Besides the discovery of novel effective agents, one realistic alternative is to enhance the activity of existing agents. This strategy could be achieved by combining existing antifungal agents with other bioactive substances with known activity profiles (combination therapy). Azole antifungals are the most frequently used class of substances used to treat fungal infections. Fluconazole is often the first choice for antifungal treatment. The aim of this work was to study potential synergy between azoles and 1,4-dihydropyridine-2,3,5-tricarboxylate (termed derivative H) in order to control fungal infections. This article points out the synergy between azoles and newly synthesized derivative H in order to fight fungal infections. Experiments confirmed the role of derivative H as substrate/inhibitor of fungal transporter Cdr1p relating to increased sensitivity to fluconazole. These findings, plus decreased expression of ERG11, are responsible for the synergistic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.