The variety of environmental stresses is probably the major challenge imposed on transcription activators and the transcriptional machinery. To precisely describe the very early genomic response developed by yeast to accommodate a chemical stress, we performed time course analyses of the modifications of the yeast gene expression program which immediately follows the addition of the antimitotic drug benomyl. Similar analyses were conducted with different isogenic yeast strains in which genes coding for relevant transcription factors were deleted and coupled with efficient bioinformatics tools. Yap1 and Pdr1, two well-known key mediators of stress tolerance, appeared to be responsible for the very rapid establishment of a transient transcriptional response encompassing 119 genes. Yap1, which plays a predominant role in this response, binds, in vivo, promoters of genes which are not automatically up-regulated. We proposed that Yap1 nuclear localization and DNA binding are necessary but not sufficient to elicit the specificity of the chemical stress response.Cellular organisms develop a myriad of strategies to maintain specific internal conditions constantly challenged by the varying drug environment. The complexity of the yeast cell system for detecting and responding to environmental variations is only beginning to come to light. It has been reported previously (13) that a large set of yeast genes (about 900) showed a similar drastic response to a large variety of environmental changes including temperature shocks, hydrogen peroxide, menadione, diamide, dithiothreitol, hyper-or hypoosmotic shock, amino acid starvation, nitrogen source depletion, and progression into stationary phase. Since these pioneering studies were reported, many observations of the global effects of a large variety of drugs on gene expression have been made. In most of these studies, a binary comparison (i.e., control versus stress-exposed cells) was carried out, whereas in some cases, time course experiments over rather long periods (several hours) were conducted. Although much valuable information has been collected in these studies, the heterogeneity in the protocols followed precludes a simple comparison between the different drug responses. In particular, it is extremely difficult to identify the different regulatory networks and to establish their chronological relationships. Time series experiments soon appeared and were much more informative than simple binary experiments. Such approaches were a particularly valuable source of information in the case of cell cycle analyses (24, 27); however, they were less suitable to describe the chronology of transcriptional events in the case of environ-
Upregulation of the MDR1 (multidrug resistance 1) gene is involved in the development of resistance to antifungal agents in clinical isolates of the pathogen Candida albicans. To better understand the molecular mechanisms underlying the phenomenon, the cis-acting regulatory elements present in the MDR1 promoter were characterized using a b-galactosidase reporter system. In an azole-susceptible strain, transcription of this reporter is transiently upregulated in response to either benomyl or H 2 O 2 , whereas its expression is constitutively high in an azoleresistant strain (FR2). Two cis-acting regulatory elements within the MDR1 promoter were identified that are necessary and sufficient to confer the same transcriptional responses on a heterologous promoter (CDR2). One, a benomyl response element (BRE), is situated at position "296 to "260 with respect to the ATG start codon. It is required for benomyl-dependent MDR1 upregulation and is also necessary for constitutive high expression of MDR1. A second element, termed H 2 O 2 response element (HRE), is situated at position "561 to "520. The HRE is required for H 2 O 2 -dependent MDR1 upregulation, but dispensable for constitutive high expression. Two potential binding sites (TTAG/CTAA) for the bZip transcription factor Cap1p (Candida AP-1 protein) lie within the HRE. Moreover, inactivation of CAP1 abolished the transient response to H 2 O 2 . Cap1p, which has been previously implicated in cellular responses to oxidative stress, may thus play a trans-acting and positive regulatory role in the H 2 O 2 -dependent transcription of MDR1. A minimal BRE ("290 to "273) that is sufficient to detect in vitro sequence-specific binding of protein complexes in crude extracts prepared from C. albicans was also defined. Interestingly, the sequence includes a perfect match to the consensus binding sequence of Mcm1p, raising the possibility that MDR1 may be a direct target of this MADS box transcriptional activator. In conclusion, while the identity of the trans-acting factors that bind to the BRE and HRE remains to be confirmed, the tools developed during this characterization of the cis-acting elements of the MDR1 promoter should now serve to elucidate the nature of the components that modulate its activity.
BackgroundMesenchymal stromal cells (MSCs) represent heterogeneous cell population suitable for cell therapies in regenerative medicine. MSCs can also substantially affect tumor biology due to their ability to be recruited to the tumor stroma and interact with malignant cells via direct contacts and paracrine signaling. The aim of our study was to characterize molecular changes dictated by adipose tissue-derived mesenchymal stromal cells (AT-MSCs) and the effects on drug responses in human breast cancer cells SKBR3.MethodsThe tumor cells were either directly cocultured with AT-MSCs or exposed to MSCs-conditioned medium (MSC-CM). Changes in cell biology were evaluated by kinetic live cell imaging, fluorescent microscopy, scratch wound assay, expression analysis, cytokine secretion profiling, ATP-based viability and apoptosis assays. The efficiency of cytotoxic treatment in the presence of AT-MSCs or MSCs-CM was analyzed.ResultsThe AT-MSCs altered tumor cell morphology, induced epithelial-to-mesenchymal transition, increased mammosphere formation, cell confluence and migration of SKBR3. These features were attributed to molecular changes induced by MSCs-secreted cytokines and chemokines in breast cancer cells. AT-MSCs significantly inhibited the proliferation of SKBR3 cells in direct cocultures which was shown to be dependent on the SDF-1α/CXCR4 signaling axis. MSC-CM-exposed SKBR3 or SKBR3 in direct coculture with AT-MSCs exhibited increased chemosensitivity and induction of apoptosis in response to doxorubicin and 5-fluorouracil.ConclusionsOur work further highlights the multi-level nature of tumor-stromal cell interplay and demonstrates the capability of AT-MSCs and MSC-secreted factors to alter the anti-tumor drug responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.